A288954
Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except before the first and after the last branch node on level 0.
Original entry on oeis.org
1, 1, 3, 13, 79, 555, 4605, 42315, 436275, 4894155, 60125625, 794437875, 11325612375, 172141044075, 2793834368325, 48009995908875, 874143494098875, 16757439016192875, 338309837281040625, 7157757510792763875, 158706419654857449375, 3673441093896736036875
Offset: 2
Cf.
A288953 (variation without initial sequence).
Cf.
A177145 (variation without initial and final sequence).
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
terms = 22; egf = 1/(3(1-z))(1/Sqrt[1-z^2] + (3z^3 - z^2 - 2z + 2)/((1-z)(1-z^2))) + O[z]^terms;
CoefficientList[egf, z] Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)
A103239
Column 0 of triangular matrix T = A103238, which satisfies: T^2 + T = SHIFTUP(T) where diagonal(T)={1,2,3,...}.
Original entry on oeis.org
1, 2, 8, 52, 480, 5816, 87936, 1601728, 34251520, 843099616, 23520367488, 734404134336, 25402332040704, 964965390917120, 39964015456707584, 1793140743838290432, 86691698782589288448, 4494521175128812273152
Offset: 0
1 = (1-2x) + 2*x/(1-x)*(1-2x)(1-3x) + 8*x^2/(1-x)^2*(1-2x)(1-3x)(1-4x) +
52*x^3/(1-x)^3*(1-2x)(1-3x)(1-4x)(1-5x) + ...
+ a(n)*x^n/(1-x)^n*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
-
{a(n)=if(n<0,0,if(n==0,1,polcoeff( 1-sum(k=0,n-1,a(k)*x^k/(1-x)^k*prod(j=0,k,1-(j+2)*x+x*O(x^n))),n)))}
A102102
Column 0 of triangular matrix A102101, which shifts upward to exclude the main diagonal under matrix fourth power.
Original entry on oeis.org
1, 1, 15, 1000, 189035, 79278446, 63263422646, 86493299281972, 187766975052827491, 611024291011881918991, 2849262494779035461688236, 18362167739517547774072439880, 158759599858376078627687256207242
Offset: 0
-
{a(n)=local(A=matrix(1,1),B);A[1,1]=1; for(m=2,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=j,if(j==1,B[i,j]=(A^4)[i-1,1], B[i,j]=(A^4)[i-1,j]));));A=B);return(A[n+1,1])}
A104416
Triangle, read by rows, where T(n,k) = A008275(k+1,n-k+1) are Stirling numbers of the first kind.
Original entry on oeis.org
1, -1, 1, 0, -3, 1, 0, 2, -6, 1, 0, 0, 11, -10, 1, 0, 0, -6, 35, -15, 1, 0, 0, 0, -50, 85, -21, 1, 0, 0, 0, 24, -225, 175, -28, 1, 0, 0, 0, 0, 274, -735, 322, -36, 1, 0, 0, 0, 0, -120, 1624, -1960, 546, -45, 1, 0, 0, 0, 0, 0, -1764, 6769, -4536, 870, -55, 1, 0, 0, 0, 0, 0, 720, -13132, 22449, -9450, 1320, -66, 1
Offset: 0
A(x,y) = (1-x) + x*y*(1-x)*(1-2*x) + x^2*y^2*(1-x)*(1-2*x)*(1-3*x) + x^3*y^3*(1-x)*(1-2*x)*(1-3*x)*(1-4*x) + ...
Rows begin:
1;
-1,1;
0,-3,1;
0,2,-6,1;
0,0,11,-10,1;
0,0,-6,35,-15,1;
0,0,0,-50,85,-21,1;
0,0,0,24,-225,175,-28,1;
0,0,0,0,274,-735,322,-36,1;
0,0,0,0,-120,1624,-1960,546,-45,1;
...
-
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff(sum(i=0,n,X^i*Y^i*prod(j=1,i+1,1-j*X)),n,x),k,y)}
A104417
Triangle, read by rows, equal to the matrix inverse of A104416, where A104416(n,k) = A008275(k+1,n-k+1) (Stirling numbers of the first kind).
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 16, 16, 6, 1, 127, 127, 49, 10, 1, 1363, 1363, 531, 115, 15, 1, 18628, 18628, 7286, 1615, 230, 21, 1, 311250, 311250, 121964, 27321, 4040, 413, 28, 1, 6173791, 6173791, 2421471, 545311, 82131, 8841, 686, 36, 1, 142190703, 142190703
Offset: 0
Column 0 forms A082161 that satisfies:
1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-3x) +
+ 16*x^3*(1-x)(1-2x)(1-3x)(1-4x) + ...
+ A082161(n+1)*x^n*(1-x)(1-2x)(1-3x)*..*(1-(n+1)*x) + ...
this g.f. can be derived from the matrix inverse, A104416.
Rows begin:
1;
1,1;
3,3,1;
16,16,6,1;
127,127,49,10,1;
1363,1363,531,115,15,1;
18628,18628,7286,1615,230,21,1;
311250,311250,121964,27321,4040,413,28,1; ...
A106208
Triangular matrix T, read by rows, that satisfies: [T^-1](n,k) = -(k+1)*T(n-1,k) when (n-1)>=k>=0, with T(n,n) = 1 and T(n+1,n) = (n+1) for n>=0.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 16, 10, 3, 1, 127, 78, 21, 4, 1, 1363, 832, 216, 36, 5, 1, 18628, 11342, 2901, 460, 55, 6, 1, 311250, 189286, 48081, 7456, 840, 78, 7, 1, 6173791, 3752320, 949800, 145660, 15955, 1386, 105, 8, 1, 142190703, 86392756, 21826470, 3327340
Offset: 0
Triangle T begins:
1;
1,1;
3,2,1;
16,10,3,1;
127,78,21,4,1;
1363,832,216,36,5,1;
18628,11342,2901,460,55,6,1;
311250,189286,48081,7456,840,78,7,1;
6173791,3752320,949800,145660,15955,1386,105,8,1; ...
Matrix inverse T^-1 begins:
1;
-1,1;
-1,-2,1;
-3,-4,-3,1;
-16,-20,-9,-4,1;
-127,-156,-63,-16,-5,1;
-1363,-1664,-648,-144,-25,-6,1;
-18628,-22684,-8703,-1840,-275,-36,-7,1; ...
where [T^-1](n,k) = -(k+1)*T(n-1,k) when (n-1)>=k>=0.
G.f. for column 0: 1 = 1(1-x) + 1*x*(1-x)(1-2x) +
3*x^2*(1-x)(1-2x)(1-3x) + ... +
T(n,0)*x^n*(1-x)(1-2x)(1-3x)*..*(1-(n+1)*x) + ...
G.f. for column 1: 1 = 1(1-2x) + 2*x*(1-2x)(1-3x) +
10*x^2*(1-2x)(1-3x)(1-4x) + ... +
T(n+1,1)*x^n*(1-2x)(1-3x)(1-4x)*..*(1-(n+2)*x) + ...
G.f. for column 2: 1 = 1(1-3x) + 3*x*(1-3x)(1-4x) +
21*x^2*(1-3x)(1-4x)(1-5x) + ... +
T(n+2,2)*x^n*(1-3x)(1-4x)(1-5x)*..*(1-(n+3)*x) + ...
-
T(n,k)=if(n
-
T(n,k)=local(A=matrix(1,1),B);A[1,1]=1; for(m=2,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=j,if(j==1,B[i,j]=(A^2)[i-1,1], B[i,j]=(A^2)[i-1,j]));));A=B);return(A[n+1,k+1]/(k+1))
A106210
Triangular matrix T, read by rows, that satisfies: [T^-1](n,k) = -k^2*T(n-2,k) when (n-2)>=k>=0, with T(n,n) = 1 and T(n+1,n) = (2*n+1) for n>=0.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 16, 16, 5, 1, 127, 127, 39, 7, 1, 1363, 1363, 416, 72, 9, 1, 18628, 18628, 5671, 967, 115, 11, 1, 311250, 311250, 94643, 16027, 1864, 168, 13, 1, 6173791, 6173791, 1876160, 316600, 36415, 3191, 231, 15, 1, 142190703, 142190703
Offset: 0
Triangle T begins:
1;
1,1;
3,3,1;
16,16,5,1;
127,127,39,7,1;
1363,1363,416,72,9,1;
18628,18628,5671,967,115,11,1;
311250,311250,94643,16027,1864,168,13,1;
6173791,6173791,1876160,316600,36415,3191,231,15,1; ...
Matrix inverse T^-1 begins:
1;
-1,1;
0,-3,1;
0,-1,-5,1;
0,-3,-4,-7,1;
0,-16,-20,-9,-9,1;
0,-127,-156,-63,-16,-11,1;
0,-1363,-1664,-648,-144,-25,-13,1;
0,-18628,-22684,-8703,-1840,-275,-36,-15,1; ...
where [T^-1](n,k) = -k^2*T(n-2,k) when (n-2)>=k>=0.
G.f. for column 0: 1/(1-0x) = 1*(1-1x) + 1*x*(1-1x)(1-2x) +
3*x^2*(1-1x)(1-2x)(1-3x) + 16*x^3*(1-1x)(1-2x)(1-3x)(1-4x) + ...
+ T(n,0)*x^n*(1-1x)(1-2x)*..*(1-(n+1)*x) + ...
G.f. for column 1: 1/(1-1x) = 1*(1-2x) + 3*x*(1-2x)(1-3x) +
16*x^2*(1-2x)(1-3x)(1-4x) + 127*x^3*(1-2x)(1-3x)(1-4x)(1-5x) + ...
+ T(n+1,1)*x^n*(1-2x)(1-3x)*..*(1-(n+2)*x) + ...
G.f. for column 2: 1/(1-2x) = 1*(1-3x) + 5*x*(1-3x)(1-4x) +
39*x^2*(1-3x)(1-4x)(1-5x) + 416*x^3*(1-3x)(1-4x)(1-5x)(1-6x) + ...
+ T(n+2,2)*x^n*(1-3x)(1-4x)*..*(1-(n+3)*x) + ...
-
T(n,k)=if(n
-
T(n,k)=local(A=matrix(1,1),B);A[1,1]=1; for(m=2,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=j,if(j==1,B[i,j]=(A^2)[i-1,1], B[i,j]=(A^2)[i-1,j]));));A=B); return(if(k==0,if(n==0,1,A[n+1,k+1]),A[n+1,k]/k^2))
A128249
T(n,k) is the number of unlabeled acyclic single-source automata with n transient states on a (k+1)-letter input alphabet.
Original entry on oeis.org
1, 3, 1, 16, 7, 1, 127, 139, 15, 1, 1363, 5711, 1000, 31, 1, 18628, 408354, 189035, 6631, 63, 1, 311250, 45605881, 79278446, 5470431, 42196, 127, 1, 6173791, 7390305396, 63263422646, 12703473581, 147606627, 262459, 255, 1, 142190703, 1647470410551
Offset: 1
-
T := proc(n,k) local kn,A,i,j ; kn := k*n ; A := matrix(kn,kn) ; for i from 1 to kn do for j from 1 to kn do A[i,j] := abs(combinat[stirling1](floor((i-1)/k)+2,floor((i-1)/k)+1+i-j)) ; od ; od ; linalg[det](A) ; end: for d from 1 to 9 do for n from d to 1 by -1 do k := d+1-n ; printf("%d, ",T(n,k)) ; od ; od;
-
t[n_, k_] := Module[{kn, a, i, j}, kn = k*n; For[i = 1, i <= kn, i++, For[j = 1, j <= kn, j++, a[i, j] = Abs[StirlingS1[Floor[(i-1)/k]+2, Max[0, Floor[(i-1)/k]+1+i-j]]]]]; Det[Array[a, {kn, kn}]]]; Table[t[n-k, k], {n, 1, 10}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Maple *)
A187806
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n * Product_{k=1..n+1} (1-k*x).
Original entry on oeis.org
1, 2, 7, 39, 314, 3388, 46409, 776267, 15406059, 354928082, 9330754204, 276092552520, 9092298247070, 330151121828252, 13114259187006717, 566025800996830823, 26391137839213285415, 1322515573450223865750, 70912312814053387968103, 4052279260763983306587339
Offset: 0
1/(1-x) = (1-x) + 2*x*(1-x)*(1-2*x) + 7*x^2*(1-x)*(1-2*x)*(1-3*x) + 39*x^3*(1-x)*(1-2*x)*(1-3*x)*(1-4*x) + 314*x^4*(1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x) + 3388*x^5*(1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x) +...
-
{a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k*prod(j=1, k+1, 1-j*x+x*O(x^n))), n))}
for(n=0,20,print1(a(n),", "))
-
upto(n) = my(v1); v1 = vector(n+1, i, 1); for(i=1, n, for(j=i+1, n+1, v1[j] += i*v1[j-1])); v1 \\ Mikhail Kurkov, Oct 25 2024
A209935
G.f.: 1 = Sum_{n>=0} a(n)*x^n*Product_{k=1..n+1} (1-k^2*x) for n>0 with a(0)=1.
Original entry on oeis.org
1, 1, 5, 66, 1735, 77587, 5339632, 527780778, 71236904519, 12635518401687, 2857729962091681, 804340796768258860, 276170316701087964628, 113757566198465278521124, 55424247710747076665462268, 31554099393732823158673973698
Offset: 0
G.f.: 1 = 1*(1-x) + 1*x*(1-x)*(1-2^2*x) + 5*x^2*(1-x)*(1-2^2*x)*(1-3^2*x) + 66*x^3*(1-x)*(1-2^2*x)*(1-3^2*x)*(1-4^2*x) + 1735*x^4*(1-x)*(1-2^2*x)*(1-3^2*x)*(1-4^2*x)*(1-5^2*x) +...
-
{a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k*prod(j=1, k+1, 1-j^2*x+x*O(x^n))), n))}
for(n=0,20,print1(a(n),", "))
Comments