cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A179607 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x - 4*x^2)/(1 - 2*x - 8*x^2).

Original entry on oeis.org

1, 4, 12, 56, 208, 864, 3392, 13696, 54528, 218624, 873472, 3495936, 13979648, 55926784, 223690752, 894795776, 3579117568, 14316601344, 57266143232, 229065097216, 916259340288, 3665039458304, 14660153638912, 58640622944256
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to just one red king vector, i.e., A[5] vector, with decimal [binary] value 325 [1,0,1,0,0,0,1,0,1]. This vectors leads for the corner squares to A083424 and for the side squares to A003947.
The inverse binomial transform of A100284 (without the first leading 1).

Crossrefs

Cf. A179597 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=24; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,0,0,0,1,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    Join[{1},LinearRecurrence[{2,8},{4,12},30]] (* Harvey P. Dale, Mar 01 2012 *)

Formula

G.f.: (1 + 2*x - 4*x^2)/(1 - 2*x - 8*x^2).
a(n) = 2*a(n-1) + 8*a(n-2), for n >= 3, with a(0) = 1, a(1) = 4 and a(2) = 12.
a(n) = 5*(4)^(n)/6 - (-2)^(n)/3 for n >= 1 and a(0) = 1.
a(n) = 4*A083424(n-1), n>0. - R. J. Mathar, Mar 08 2021

A245181 Numbers appearing in A245180.

Original entry on oeis.org

1, 3, 8, 14, 24, 52, 64, 72, 112, 192, 216, 336, 416, 512, 576, 848, 896, 1248, 1536, 1568, 1728, 2688, 3328, 3424, 4096, 4608, 5184, 5824, 6784, 7168, 8064, 9984, 12288, 12544, 13632, 13824, 20352, 21504, 21632, 24192, 26624, 27392, 29952, 32768, 36864, 37632, 41472, 46592, 54272, 54656
Offset: 1

Views

Author

N. J. A. Sloane, Jul 17 2014

Keywords

Crossrefs

Cf. A245180. A083424 is a subsequence.

A083423 a(n) = (5*3^n + (-3)^n)/6.

Original entry on oeis.org

1, 2, 9, 18, 81, 162, 729, 1458, 6561, 13122, 59049, 118098, 531441, 1062882, 4782969, 9565938, 43046721, 86093442, 387420489, 774840978, 3486784401, 6973568802, 31381059609, 62762119218, 282429536481, 564859072962
Offset: 0

Views

Author

Paul Barry, Apr 30 2003

Keywords

Crossrefs

Cf. A083424.

Programs

  • Mathematica
    LinearRecurrence[{0,9},{1,2},30] (* Harvey P. Dale, Dec 04 2019 *)

Formula

From Reinhard Zumkeller, Mar 04 2011: (Start)
G.f.: (1+2x)/((1-3x)*(1+3x)).
E.g.f.: (5*exp(3x) + exp(-3x))/6.
a(n+3) = a(n+2)*a(n+1)/a(n). (End)
a(n) = 9*a(n-2). - Vincenzo Librandi, Mar 20 2011

A122910 Expansion of (1-2x-3x^2)/((1-2x)(1+4x)(1-8x)).

Original entry on oeis.org

1, 4, 45, 302, 2636, 20184, 165040, 1305952, 10504896, 83809664, 671394560, 5367485952, 42954566656, 343577810944, 2748857364480, 21989919383552, 175923113148416, 1407369872769024, 11259019111628800, 90071912374730752
Offset: 0

Views

Author

Paul Barry, Sep 18 2006

Keywords

Comments

Let M be the matrix M(n,k)=J(k+1)*sum{j=0..n, (-1)^(n-j)C(n,j)C(j+1,k+1)}. a(n) gives the row sums of M^3.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x-3x^2)/((1-2x)(1+4x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{6, 24, -64}, {1, 4, 45}, 30] (* Harvey P. Dale, Jun 21 2011 *)

Formula

G.f.: (1-2x-3x^2)/(1-6x-24x^2+64x^3); a(n)=5*8^n/8+7*(-4)^n/24+2^n/12; a(n)=J(n)*A083424(n-1)+J(n+1)*A083424(n) where J(n) are the Jacobsthal numbers A001045(n).
a(0)=1, a(1)=4, a(2)=45, a(n)=6*a(n-1)+24*a(n-2)-64*a(n-3). - Harvey P. Dale, Jun 21 2011
Previous Showing 11-14 of 14 results.