cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A377879 Deficiency of squares: a(n) = 2n^2 - sigma(n^2).

Original entry on oeis.org

1, 1, 5, 1, 19, -19, 41, 1, 41, -17, 109, -115, 155, -7, 47, 1, 271, -199, 341, -161, 141, 37, 505, -499, 469, 71, 365, -199, 811, -1021, 929, 1, 449, 163, 683, -1159, 1331, 221, 663, -737, 1639, -1659, 1805, -251, 299, 361, 2161, -2035, 2001, -467, 1211, -265, 2755, -1819, 1927, -967, 1545, 631, 3421, -5293, 3659, 737
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2024

Keywords

Comments

It is conjectured that 1's occur only when n is two's power (A000079), and that there are no -1's in this sequence. See comments in A033879 and in A337339.

Crossrefs

Cf. A000290, A000079 (conjectured to give positions of all 1's), A033879, A378231 [= a(A003961(n))].
Cf. also square array A083064.

Programs

Formula

a(n) = A033879(A000290(n)).

A083885 (4^n+2^n+0^n+(-2)^n)/4.

Original entry on oeis.org

1, 1, 6, 16, 72, 256, 1056, 4096, 16512, 65536, 262656, 1048576, 4196352, 16777216, 67117056, 268435456, 1073774592, 4294967296, 17180000256, 68719476736, 274878431232, 1099511627776, 4398048608256, 17592186044416, 70368752566272
Offset: 0

Views

Author

Paul Barry, May 09 2003

Keywords

Comments

Binomial transform of A083884.

Programs

  • Magma
    [(4^n+2^n+0^n+(-2)^n)/4: n in [0..20]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Join[{1},Table[(4^n+2^n+(-2)^n)/4,{n,30}]] (* or *) Join[{1}, LinearRecurrence[ {4,4,-16},{1,6,16},30]] (* Harvey P. Dale, Dec 12 2011 *)

Formula

a(n) = (4^n+2^n+0^n+(-2)^n)/4.
G.f.: (4*x^3-2*x^2-3*x+1)/((2*x+1)*(2*x-1)*(4*x-1)).
E.g.f.: exp(4*x)+exp(2*x)+exp(0)+exp(-2*x).
A007814(a(n)) = A022998(n-1). - Ralf Stephan, Feb 14 2004
a(0)=1, a(1)=1, a(2)=6, a(3)=16, a(n)=4*a(n-1)+4*a(n-2)-16*a(n-3) [From Harvey P. Dale, Dec 12 2011]

A191687 Table T(n,k) = ceiling((1/2)*((k+1)^n+(1+(-1)^k)/2)) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 14, 8, 3, 1, 1, 16, 41, 32, 13, 3, 1, 1, 32, 122, 128, 63, 18, 4, 1, 1, 64, 365, 512, 313, 108, 25, 4, 1, 1, 128, 1094, 2048, 1563, 648, 172, 32, 5, 1
Offset: 1

Views

Author

Adi Dani, Jun 11 2011

Keywords

Comments

T(n,k) is the number of compositions of even natural numbers into n parts <= k.

Examples

			Top left corner:
  1, 1, 1,  1,  1,...
  1, 1, 2,  2,  3,...
  1, 2, 5,  8, 13,...
  1, 4,14, 32, 63,...
  1, 8,41,128,313,...
T(2,4)=13: there are 13 compositions of even natural numbers into 2 parts <=4
0: (0,0);
2: (0,2), (2,0), (1,1);
4: (0,4), (4,0), (1,3), (3,1), (2,2);
6: (2,4), (4,2), (3,3);
8: (4,4).
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Ceiling[1/2*((k+1)^n+(1+(-1)^k)/2)],{n,0,9},{k,0,9}]]
Previous Showing 11-13 of 13 results.