A111138 Let b(n) denote the number of nontriangular numbers less than or equal to n. Then a(n) = b(n-1) + a(b(n-1)), with a(1) = a(2) = 0, a(3) = 1.
0, 0, 1, 1, 2, 4, 4, 5, 7, 10, 10, 11, 13, 16, 20, 20, 21, 23, 26, 30, 35, 35, 36, 38, 41, 45, 50, 56, 56, 57, 59, 62, 66, 71, 77, 84, 84, 85, 87, 90, 94, 99, 105, 112, 120, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 165, 166, 168, 171, 175, 180, 186, 193, 201
Offset: 1
Examples
a(31) = b(30) + a(b(30)) = 23 + a(23) = 23 + b(22) + a(b(22)) = 23 + 16 + a(16) = 39 + b(15) + a(b(15)) = 39 + 10 + a(10) = 49 + b(9) + a(b(9)) = 49 + 6 + a(6) = 55 + b(5) + a(b(5)) = 55 + 3 + a(3) = 58 + 1 = 59.
Links
- Arturo Magidin, Capable groups of prime exponent and class two II, arXiv:math/0506578 [math.GR], 2005.
Crossrefs
Cf. A083920.
Programs
-
Mathematica
a[1] = a[2] = 0; a[3] = 1; a[n_] := a[n] = b[n - 1] + a[b[n - 1]]; b[n_] := n - Floor[(Sqrt[8n + 1] - 1)/2]; Array[a, 64] (* Robert G. Wilson v, Feb 01 2006 *)
-
PARI
a(n) = my(r,m=sqrtint(n<<1,&r)); if(r
>1,2); \\ Kevin Ryde, Oct 26 2024
Formula
If we write n = (m choose 2) + s, 0<=s<=m, then a(n)=(m choose 3) + (s choose 2).
a(N) = Comb(T,2)+Comb(R,3) where R:=Round(Sqrt(2*N)) and T:=N-Comb(R,2). - Gerald Hillier, Nov 18 2017
Extensions
More terms from Robert G. Wilson v, Feb 01 2006
Comments