cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A381679 Euler transform of A000056.

Original entry on oeis.org

1, 1, 7, 31, 100, 364, 1152, 3864, 12102, 37358, 113618, 337562, 990798, 2857926, 8144334, 22902470, 63660695, 175026047, 476242001, 1283435153, 3427047146, 9072455146, 23820491998, 62057045134, 160471504373, 412022656517, 1050740365571, 2662223436203
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[4, k^2]/DivisorSigma[2, k^2]*a[n-k], {k, 1, n}]/n; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Mar 04 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 4)/sigma(k^2, 2)*x^k/k)))

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A000056(k).
G.f.: exp( Sum_{k>=1} sigma_4(k^2)/sigma_2(k^2) * x^k/k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} sigma_4(k^2)/sigma_2(k^2) * a(n-k).
a(n) ~ exp(5*(3*zeta(5)/zeta(3))^(1/5) * n^(4/5) / 2^(7/5) - 1/10 - 12*zeta'(-3)) * A^(6/5) * (3*zeta(5)/zeta(3))^(3/25) / (2^(7/50) * sqrt(5*Pi) * n^(31/50)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 04 2025

A108223 a(n) = sigma_{2n}(n^2)/sigma_n(n^2), where sigma_n(m) = Sum_{d|m} d^n.

Original entry on oeis.org

1, 13, 703, 61681, 9762501, 2140365529, 678222249307, 280379743338241, 150087010086914941, 99902428887422922553, 81402749386554449442711, 79477293980103609858493681, 91733330193268313783293023757, 123469159731637675342948027295569, 191751045863140709562160603031808243
Offset: 1

Views

Author

Leroy Quet, Jun 28 2005

Keywords

Examples

			sigma_4(4)/sigma_2(4) =
(1 + 2^4 + 4^4)/(1 + 2^2 + 4^2) = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[2n, n^2]/DivisorSigma[n, n^2], {n, 10}] (* Ryan Propper, Apr 03 2007 *)
  • PARI
    a(n) = sigma(n^2, 2*n)/sigma(n^2, n); \\ Michel Marcus, Sep 06 2019

Formula

a(n) = Product_{p=primes} (Sum_{k=0..2*b(n, p)} p^(n*k)*(-1)^k), where p^b(n, p) is the highest power of p dividing n.
From Seiichi Manyama, May 18 2024: (Start)
a(n) = Sum_{1 <= x_1, x_2, ... , x_n <= n} ( n/gcd(x_1, x_2, ... , x_n, n) )^n.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^n * sigma_{2*n}(d). (End)

Extensions

More terms from Ryan Propper, Apr 03 2007
More terms from Michel Marcus, Sep 06 2019
Previous Showing 11-12 of 12 results.