cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A302788 Number of times the smallest Fermi-Dirac factor of n is the smallest Fermi-Dirac factor for numbers <= n; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 3, 1, 1, 6, 1, 2, 4, 7, 1, 8, 1, 9, 5, 3, 1, 10, 1, 11, 6, 12, 2, 4, 1, 13, 7, 14, 1, 15, 1, 5, 3, 16, 1, 8, 1, 17, 9, 6, 1, 18, 4, 19, 10, 20, 1, 11, 1, 21, 2, 7, 5, 22, 1, 8, 12, 23, 1, 24, 1, 25, 13, 9, 3, 26, 1, 6, 1, 27, 1, 14, 7, 28, 15, 29, 1, 30, 4, 10, 16, 31, 8, 32, 1, 33, 2, 11, 1, 34, 1, 35, 17
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

Ordinal transform of A223490, or equally, of A302786.

Crossrefs

Cf. A084400 (gives the positions of 1's).
Cf. also A078898.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A302786(n) = if(1==n, 0, A001511(A052331(n)));
    v302788 = ordinal_transform(vector(up_to,n,A302786(n)));
    A302788(n) = v302788[n];

A302792 a(1) = 1; for n>1, a(n) = n/(smallest Fermi-Dirac factor of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 4, 1, 5, 1, 4, 1, 7, 5, 1, 1, 9, 1, 5, 7, 11, 1, 12, 1, 13, 9, 7, 1, 15, 1, 16, 11, 17, 7, 9, 1, 19, 13, 20, 1, 21, 1, 11, 9, 23, 1, 16, 1, 25, 17, 13, 1, 27, 11, 28, 19, 29, 1, 20, 1, 31, 9, 16, 13, 33, 1, 17, 23, 35, 1, 36, 1, 37, 25, 19, 11, 39, 1, 16, 1, 41, 1, 28, 17, 43, 29, 44, 1, 45, 13, 23, 31, 47, 19, 48, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

The positive integers that are absent from this sequence are A036554, integers that have 2 as a Fermi-Dirac factor. - Peter Munn, Apr 23 2018
a(n) is the largest aliquot infinitary divisor of n, for n > 1 (cf. A077609). - Amiram Eldar, Nov 19 2022

Crossrefs

Cf. A084400 (gives the positions of 1's).
Cf. also A032742.

Programs

  • Mathematica
    f[p_, e_] := p^(2^IntegerExponent[e, 2]); a[n_] := n / Min @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A223490(n) = if(1==n,n,A050376(A001511(A052331(n))));
    A302792(n) = (n/A223490(n));
    
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n)); for(i=1, #f~, f[i,1] = f[i,1]^(1<Amiram Eldar, Nov 19 2022

Formula

a(n) = n / A223490(n).

A340088 a(n) = A091732(n) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 6, 1, 12, 8, 2, 1, 8, 1, 15, 5, 16, 12, 24, 1, 18, 12, 4, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 16, 20, 18, 9, 28, 1, 24, 1, 30, 24, 5, 3, 4, 1, 48, 11, 8, 1, 24, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 10, 1, 32, 4, 66
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Conjecture: a(n) = 1 iff n = 1 or in A050376. This is an infinitary analog of Lehmer's totient conjecture from 1932.
For all i, j > 1: a(i) = a(j) => A302777(i) = A302777(j), if the above conjecture holds.

Crossrefs

Programs

  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A340088(n) = { my(x=A091732(n)); (x/gcd(n-1, x)); };

Formula

a(n) = A091732(n) / A340087(n) = A091732(n) / gcd(n-1, A091732(n)).
For all n >= 1, a(A084400(n)) = 1.

A219964 a(n) = product(i >= 0, (P(n, i)/P(n-1, i))^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).

Original entry on oeis.org

1, 1, 2, 3, 2, 5, 3, 7, 4, 1, 5, 11, 9, 13, 7, 1, 16, 17, 1, 19, 25, 1, 11, 23, 81, 1, 13, 1, 49, 29, 1, 31, 256, 1, 17, 1, 1, 37, 19, 1, 625, 41, 1, 43, 121, 1, 23, 47, 6561, 1, 1, 1, 169, 53, 1, 1, 2401, 1, 29, 59, 1, 61, 31, 1, 65536, 1, 1, 67, 289, 1, 1, 71
Offset: 0

Views

Author

Peter Luschny and Arie Groeneveld, Mar 30 2013

Keywords

Comments

a(n) is 1 or a prime or an even power of a prime (A084400, A050376).
If n > 0 then a(n) = 1 if and only if n is an element of A110473.

Examples

			a(20) = (7/(5*7))^2*((3*5)/3)^4 = 25.
a(22) = ((13*17*19)/(11*13*17*19))*((7*11)/7)^2 = 11.
		

Crossrefs

Cf. A220027, the partial products of a(n).

Programs

  • J
    genSeq=: 3 :0
    p=. x: i.&.(_1&p:) y1=.y+1
    i=.(#~y1>])&.> <:@((i.@>.&.(2&^.)y1)*])&.> p
    y{.(;p(^2x^0,i.@<:@#)&.>i) (;i) } y1$1
    )
    
  • Maple
    A219964 := proc(n) local l, m, z;
    if isprime(n) then RETURN(n) fi;
    z := 1; l := n - 1; m := n;
    do l := iquo(l, 2); m := iquo(m, 2);
       if l = 0 then break fi;
       if l < m then if isprime(l+1) then RETURN((l+1)^z) fi fi;
       z := z + z;
    od; 1 end:  seq(A219964(k), k=0..71);
  • Mathematica
    a[n_] := Module[{l, m, z}, If[PrimeQ[n] , Return[n] ]; z = 1; l = Max[0, n - 1]; m = n; While[True, l = Quotient[l, 2]; m = Quotient[m, 2]; If[l == 0 , Break[]]; If[l < m , If[ PrimeQ[l+1], Return[(l+1)^z]]]; z = z+z]; 1]; Table[a[k], {k, 0, 71}] (* Jean-François Alcover, Jan 15 2014, after Maple *)
  • Sage
    def A219964(n):
        if is_prime(n): return n
        z = 1; l = max(0,n-1); m = n
        while true:
            l = l // 2
            m = m // 2
            if l == 0: break
            if l < m:
                if is_prime(l+1): return (l+1)^z
            z = z + z
        return 1
    [A219964(n) for n in (0..71)]

Formula

a(n) = A220027(n) / A220027(n-1).
Previous Showing 11-14 of 14 results.