cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A034908 One half of octo-factorial numbers.

Original entry on oeis.org

1, 10, 180, 4680, 159120, 6683040, 334152000, 19380816000, 1279133856000, 94655905344000, 7761784238208000, 698560581438720000, 68458936980994560000, 7256647319985423360000, 827257794478338263040000, 100925450926357268090880000, 13120308620426444851814400000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(&*[(8*k-6): k in [1..n]])/2: n in [1..30]]; // G. C. Greubel, Feb 26 2018
  • Mathematica
    Drop[With[{nn = 40}, CoefficientList[Series[(-1 + (1 - 8*x)^(-1/4))/2, {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 26 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-1+(1-8*x)^(-1/4))/2)) \\ G. C. Greubel, Feb 26 2018
    

Formula

2*a(n) = (8*n-6)(!^8) := product(8*j-6, j=1..n) = 2^n*A007696(n); compare with A007696(n) = (4*n-3)(!^4) := product(4*j-3, j=1..n).
E.g.f.: (-1+(1-8*x)^(-1/4))/2.
G.f.: x/(1-10x/(1-8x/(1-18x/(1-16x/(1-26x/(1-24x/(1-34x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A084948(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/8^6)^(1/8)*(Gamma(1/4) - Gamma(1/4, 1/8)). (End)

Extensions

Terms a(16) onward added by G. C. Greubel, Feb 26 2018

A167884 Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.

Original entry on oeis.org

1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
Offset: 1

Views

Author

Roger L. Bagula, Nov 14 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      18,        1;
  1,     179,      179,         1;
  1,    1636,     6086,      1636,         1;
  1,   14757,   144362,    144362,     14757,        1;
  1,  132854,  2941135,   7218100,   2941135,   132854,       1;
  1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
		

Crossrefs

For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, A167884, ...
Cf. A084948 (row sums).

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
    A167884[n_, k_]:= T[n,k,8];
    Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A167884(n,k): return T(n,k,8)
    flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 8.
Sum_{k=1..n} T(n, k) = A084948(n-1).

Extensions

Edited by N. J. A. Sloane, May 08 2013
Previous Showing 11-12 of 12 results.