A373547
Triangle read by rows: T(n,k) = 4^k*binomial(n+k, n-k) with 0 <= k <= n.
Original entry on oeis.org
1, 1, 4, 1, 12, 16, 1, 24, 80, 64, 1, 40, 240, 448, 256, 1, 60, 560, 1792, 2304, 1024, 1, 84, 1120, 5376, 11520, 11264, 4096, 1, 112, 2016, 13440, 42240, 67584, 53248, 16384, 1, 144, 3360, 29568, 126720, 292864, 372736, 245760, 65536, 1, 180, 5280, 59136, 329472, 1025024, 1863680, 1966080, 1114112, 262144
Offset: 0
The triangle begins as:
1;
1, 4;
1, 12, 16;
1, 24, 80, 64;
1, 40, 240, 448, 256;
1, 60, 560, 1792, 2304, 1024;
1, 84, 1120, 5376, 11520, 11264, 4096;
...
T(2,1) = 12 since there are 12 occurrences of (01)^1 = 01 in (0011)^2 = 00110011: {1, 3}, {1, 4}, {1, 7}, {1, 8}, {2, 3}, {2, 4}, {2, 7}, {2, 8}, {5, 7}, {5, 8}, {6, 7}, {6, 8}.
-
T[n_,k_]:=4^k Binomial[n+k,n-k]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* or *)
T[n_,k_]:=SeriesCoefficient[(1-x)/((1-x)^2-4x y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten
A373628
Triangle read by rows: T(n,k) is the number of occurrences of the periodic substring (0011)^k in the periodic string (000111)^n.
Original entry on oeis.org
1, 1, 9, 1, 81, 81, 1, 351, 1377, 729, 1, 1035, 11421, 18225, 6561, 1, 2430, 62613, 223803, 216513, 59049, 1, 4914, 259119, 1813023, 3523257, 2421009, 531441, 1, 8946, 874071, 10978740, 37850409, 49069719, 26040609, 4782969, 1, 15066, 2525499, 53362800, 303255981, 657274419, 631883349, 272629233, 43046721
Offset: 0
The triangle begins as:
1;
1, 9;
1, 81, 81;
1, 351, 1377, 729;
1, 1035, 11421, 18225, 6561;
1, 2430, 62613, 223803, 216513, 59049;
...
T(1,1) = 9 since there are 9 occurrences of (0011)^1 = 0011 in (000111)^1 = 000111: {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}.
-
T[n_, k_]:=SeriesCoefficient[(1-x)^3/((1-x)^4-9x(1+2x)^2y), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten
A177040
Irregular triangle t(n,m) = binomial(m+1,n-m) read by rows floor((n+1)/2) <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 3, 4, 1, 6, 5, 1, 4, 10, 6, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 36, 210, 462, 495, 286, 91, 15, 1
Offset: 0
1;
1;
2, 1;
3, 1;
3, 4, 1;
6, 5, 1;
4, 10, 6, 1;
10, 15, 7, 1;
5, 20, 21, 8, 1;
15, 35, 28, 9, 1;
6, 35, 56, 36, 10, 1;
21, 70, 84, 45, 11, 1;
7, 56, 126, 120, 55, 12, 1;
28, 126, 210, 165, 66, 13, 1;
8, 84, 252, 330, 220, 78, 14, 1;
36, 210, 462, 495, 286, 91, 15, 1;
-
t[n_, m_] := Binomial[m + 1, n - m];
Table[Table[t[n, m], {m, Floor[(n + 1)/2], n}], {n, 0, 15}];
Flatten[%]
-
T(m,n)=binomial(n+1,m-n) \\ Charles R Greathouse IV, May 19 2013
Comments