cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-63 of 63 results.

A373547 Triangle read by rows: T(n,k) = 4^k*binomial(n+k, n-k) with 0 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 12, 16, 1, 24, 80, 64, 1, 40, 240, 448, 256, 1, 60, 560, 1792, 2304, 1024, 1, 84, 1120, 5376, 11520, 11264, 4096, 1, 112, 2016, 13440, 42240, 67584, 53248, 16384, 1, 144, 3360, 29568, 126720, 292864, 372736, 245760, 65536, 1, 180, 5280, 59136, 329472, 1025024, 1863680, 1966080, 1114112, 262144
Offset: 0

Views

Author

Stefano Spezia, Jun 09 2024

Keywords

Comments

T(n,k) is the number of occurrences of the periodic substring (01)^k in the periodic string (0011)^n (see Proposition 4.3 at page 6 in Fang).
The word (w_1, w_2, ..., w_r)^m is defined as the word obtained by concatenating (w_1, w_2, ..., w_r) m times.
A word w' = (w'1, w'_2, ..., w'_s) is said be a subword of a given word w = (w_1, w_2, ..., w_r), if there is some set P = {p_1 < ... < p_s} of integers from 1 to r satisfying w{p_j} = w'_j for all 1 <= j <= s, and we call the set P an occurrence of w' in w (see Preliminaries section at pp. 2-3 in Fang).

Examples

			The triangle begins as:
  1;
  1,  4;
  1, 12,   16;
  1, 24,   80,   64;
  1, 40,  240,  448,   256;
  1, 60,  560, 1792,  2304,  1024;
  1, 84, 1120, 5376, 11520, 11264, 4096;
  ...
T(2,1) = 12 since there are 12 occurrences of (01)^1 = 01 in (0011)^2 = 00110011: {1, 3}, {1, 4}, {1, 7}, {1, 8}, {2, 3}, {2, 4}, {2, 7}, {2, 8}, {5, 7}, {5, 8}, {6, 7}, {6, 8}.
		

Crossrefs

Cf. A000012 (k=0), A000302 (diagonal), A001653 (row sums), A046092 (k=1), A046717, A085478, A130810, A130812, A373628.

Programs

  • Mathematica
    T[n_,k_]:=4^k Binomial[n+k,n-k]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* or *)
    T[n_,k_]:=SeriesCoefficient[(1-x)/((1-x)^2-4x y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten

Formula

G.f.: (1 - x)/((1 - x)^2 - 4*x*y).
T(n,k) = A000302(k)*A085478(n,k).
Sum_{k=0..n} T(n-k,k) = A046717(n).
T(n,2) = A130810(n+2).
T(n,3) = A130812(n+3).

A373628 Triangle read by rows: T(n,k) is the number of occurrences of the periodic substring (0011)^k in the periodic string (000111)^n.

Original entry on oeis.org

1, 1, 9, 1, 81, 81, 1, 351, 1377, 729, 1, 1035, 11421, 18225, 6561, 1, 2430, 62613, 223803, 216513, 59049, 1, 4914, 259119, 1813023, 3523257, 2421009, 531441, 1, 8946, 874071, 10978740, 37850409, 49069719, 26040609, 4782969, 1, 15066, 2525499, 53362800, 303255981, 657274419, 631883349, 272629233, 43046721
Offset: 0

Views

Author

Stefano Spezia, Jun 11 2024

Keywords

Comments

The word (w_1, w_2, ..., w_r)^m is defined as the word obtained by concatenating (w_1, w_2, ..., w_r) m times.
A word w' = (w'1, w'_2, ..., w'_s) is said be a subword of a given word w = (w_1, w_2, ..., w_r), if there is some set P = {p_1 < ... < p_s} of integers from 1 to r satisfying w{p_j} = w'_j for all 1 <= j <= s, and we call the set P an occurrence of w' in w (see Preliminaries section at pp. 2-3 in Fang).

Examples

			The triangle begins as:
  1;
  1,    9;
  1,   81,    81;
  1,  351,  1377,    729;
  1, 1035, 11421,  18225,   6561;
  1, 2430, 62613, 223803, 216513, 59049;
  ...
T(1,1) = 9 since there are 9 occurrences of (0011)^1 = 0011 in (000111)^1 = 000111: {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}.
		

Crossrefs

Cf. A000012 (k=0), A001019 (diagonal), A085478, A373547.

Programs

  • Mathematica
    T[n_, k_]:=SeriesCoefficient[(1-x)^3/((1-x)^4-9x(1+2x)^2y), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten

Formula

G.f.: (1 - x)^3/((1 - x)^4 - 9*x*(1 + 2*x)^2*y).

A177040 Irregular triangle t(n,m) = binomial(m+1,n-m) read by rows floor((n+1)/2) <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 4, 1, 6, 5, 1, 4, 10, 6, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 36, 210, 462, 495, 286, 91, 15, 1
Offset: 0

Views

Author

Roger L. Bagula, May 01 2010

Keywords

Comments

Row sums are in A052952.
Contains the right half of each row of A030528. - R. J. Mathar, May 19 2013

Examples

			1;
1;
2, 1;
3, 1;
3, 4, 1;
6, 5, 1;
4, 10, 6, 1;
10, 15, 7, 1;
5, 20, 21, 8, 1;
15, 35, 28, 9, 1;
6, 35, 56, 36, 10, 1;
21, 70, 84, 45, 11, 1;
7, 56, 126, 120, 55, 12, 1;
28, 126, 210, 165, 66, 13, 1;
8, 84, 252, 330, 220, 78, 14, 1;
36, 210, 462, 495, 286, 91, 15, 1;
		

Crossrefs

Cf. A180987 (read diagonally downwards), A098925, A026729, A085478, A165253

Programs

  • Mathematica
    t[n_, m_] := Binomial[m + 1, n - m];
    Table[Table[t[n, m], {m, Floor[(n + 1)/2], n}], {n, 0, 15}];
    Flatten[%]
  • PARI
    T(m,n)=binomial(n+1,m-n) \\ Charles R Greathouse IV, May 19 2013
Previous Showing 61-63 of 63 results.