cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A086037 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 1, 8, 4, 4, 8, 5, 9, 9, 7, 9, 5, 2, 6, 8, 2, 5, 1, 0, 2, 6, 5, 8, 2, 1, 6, 6, 5, 0, 7, 9, 3, 5, 8, 2, 0, 6, 0, 6, 7, 4, 9, 5, 6, 3, 3, 4, 4, 7, 9, 4, 3, 6, 2, 6, 5, 6, 9, 1, 4, 6, 8, 2, 1, 9, 4, 3, 9, 9, 4, 9, 5, 0, 8, 5, 2, 8, 5, 3, 2, 3, 8, 9, 5, 3, 4, 0, 5, 4, 6, 4, 2, 7, 4, 5, 3, 9, 2, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			1.2818448599795268251026582166507935820606749563344794362656914682... * 10^-5
		

Crossrefs

Cf. A085996 (same for primes 4k+3), A343627 (for primes 3k+1), A343617 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085967 (PrimeZeta(7)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 1200; Join[{0, 0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086037_upto(N=100)={localprec(N+3); digits((PrimeZeta41(7)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(7) = Sum_{p in A002144} 1/p^7 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m*log(DirichletBeta(7m)*zeta(7m)/zeta(14m)/(1+2^(-7m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A360094 Decimal expansion of Sum_{p primes, p == 1 mod 4} log(p)/p^2.

Original entry on oeis.org

1, 0, 7, 3, 5, 9, 5, 4, 5, 2, 9, 7, 1, 1, 3, 0, 7, 7, 1, 3, 8, 4, 5, 0, 3, 8, 2, 0, 0, 9, 1, 2, 1, 9, 0, 1, 1, 6, 6, 3, 3, 9, 3, 9, 6, 9, 1, 2, 6, 3, 7, 7, 7, 9, 3, 7, 2, 6, 5, 9, 5, 8, 0, 7, 8, 0, 2, 7, 8, 7, 7, 0, 5, 8, 5, 0, 7, 3, 6, 8, 7, 8, 6, 3, 9, 9, 6, 4, 6, 6, 5, 0, 7, 6, 5, 7, 2, 0, 1, 0, 1, 9, 5, 1, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2023

Keywords

Examples

			0.107359545297113077138450382009121901166339396912637779372659580780278...
		

Crossrefs

Programs

  • Mathematica
    alfa[s_]:= 1/(1 + 1/2^s) * DirichletBeta[s] * Zeta[s] / Zeta[2*s]; Do[Print[N[-1/2*Sum[MoebiusMu[2*n + 1]/(2*n + 1) * D[Log[alfa[(2*n + 1)*s]], s] /. s->2, {n, 0, m}], 120]], {m, 10, 100, 10}]

Formula

Equals A136271 - A360095 - log(2)/4.

A086240 Decimal expansion of Sum_{k>=2} (p mod 4 - 2)/p^2 where p=prime(k).

Original entry on oeis.org

0, 9, 4, 6, 1, 9, 8, 9, 2, 8, 9, 2, 9, 5, 0, 1, 5, 7, 9, 4, 5, 1, 8, 6, 7, 9, 0, 1, 4, 9, 1, 7, 4, 8, 0, 9, 6, 0, 1, 8, 8, 0, 3, 4, 0, 2, 4, 9, 7, 2, 1, 3, 5, 7, 1, 4, 8, 5, 9, 6, 0, 8, 5, 7, 5, 9, 4, 3, 1, 3, 7, 3, 2, 7, 5, 6, 2, 5, 5, 8, 4, 1, 6, 3, 9, 0, 4, 4, 2, 9, 3, 4, 6, 4, 3, 8, 0, 7, 9, 9, 6, 4, 2, 0, 8, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jul 13 2003

Keywords

Examples

			0.094619892892950157945186790149174809601880340249721357148596...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98

Formula

Equals A085991 - A086032. - Vaclav Kotesovec, Jun 19 2020

Extensions

A missing digit inserted and more digits added by R. J. Mathar, Jul 28 2010
More digits from Vaclav Kotesovec, Jun 19 2020
Previous Showing 11-13 of 13 results.