A358518
a(n) = Sum_{k=0..n} binomial(n+3*k+3,n-k) * Catalan(k).
Original entry on oeis.org
1, 5, 20, 85, 405, 2116, 11766, 68237, 407789, 2492553, 15506942, 97859544, 624880895, 4029896310, 26209648212, 171711104853, 1132143259711, 7506530891217, 50019287312324, 334784759816729, 2249720564735567, 15172573979205166, 102662981205576494
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+3, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/((1-x)^4*(1+sqrt(1-4*x/(1-x)^4))))
A364621
G.f. satisfies A(x) = 1/(1-x)^2 + x*A(x)^4.
Original entry on oeis.org
1, 3, 15, 118, 1125, 11805, 131431, 1524090, 18208749, 222570985, 2770129627, 34985756752, 447243818573, 5775955923428, 75245253495035, 987627627396792, 13048147674230169, 173382031819242855, 2315662483861709467, 31068798980975635130, 418552735866147739185
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k+1, 6*k+1)*binomial(4*k, k)/(3*k+1));
A336858
Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 9, 1, 1, 7, 21, 31, 1, 1, 9, 37, 89, 121, 1, 1, 11, 57, 183, 393, 515, 1, 1, 13, 81, 321, 897, 1805, 2321, 1, 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1, 1, 17, 141, 761, 3001, 9161, 22149, 41585, 52465, 1, 1, 19, 177, 1079, 4841, 17003, 48313, 112047, 206097, 258563, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 3, 1;
1, 5, 9, 1;
1, 7, 21, 31, 1;
1, 9, 37, 89, 121, 1;
1, 11, 57, 183, 393, 515, 1;
1, 13, 81, 321, 897, 1805, 2321, 1;
1, 15, 109, 511, 1729, 4431, 8557, 10879, 1;
...
-
A336858row := proc(n) option remember; local T, k, row;
row := Array(0..n, fill=1);
if n = 0 then return row fi; T := procname(n-1);
for k from 1 to n-1 do row[k] := T[k] + T[k-1] + row[k-1] od; row end:
T := (n, k) -> A336858row(n)[k]:
seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 06 2020
-
T[, 0] = 1; T[n, n_] = 1;
T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, k] + T[n-1, k-1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2023 *)
A381943
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 11, 60, 425, 3426, 29619, 267738, 2497889, 23866056, 232325475, 2295889266, 22971682893, 232248775669, 2368969672183, 24348849065860, 251930963865061, 2621914660411919, 27428338267887815, 288258167672381602, 3042002859317810001, 32222429872821051817
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(n+k+1, n-k)/(4*k+1));
A381945
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 3, 12, 79, 695, 6961, 74679, 837336, 9689234, 114822820, 1386402276, 16994276781, 210919650044, 2645218761934, 33470438908615, 426758782807956, 5477657372957314, 70720821402587371, 917801926609131194, 11966203939448781600, 156662012236067711036, 2058709975008385135863
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(n+k+1, n-k)/(5*k+1));
A336859
Mirror image of triangular array A336858.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 31, 21, 7, 1, 1, 121, 89, 37, 9, 1, 1, 515, 393, 183, 57, 11, 1, 1, 2321, 1805, 897, 321, 81, 13, 1, 1, 10879, 8557, 4431, 1729, 511, 109, 15, 1, 1, 52465, 41585, 22149, 9161, 3001, 761, 141, 17, 1, 1, 258563, 206097, 112047, 48313, 17003, 4841, 1079, 177, 19, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 3, 1;
1, 9, 5, 1;
1, 31, 21, 7, 1;
1, 121, 89, 37, 9, 1;
1, 515, 393, 183, 57, 11, 1;
1, 2321, 1805, 897, 321, 81, 13, 1;
1, 10879, 8557, 4431, 1729, 511, 109, 15, 1;
...
-
A000108(n) = binomial(2*n, n)/(n+1);
A086616(n) = sum(k=0, n, binomial(n+k+1, 2*k+1) * A000108(k));
T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (k==1, A086616(n-1), if (n>k, T(n, k-1) - T(n-1, k-1) - T(n-1, k-2), 0))));
for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 08 2020
Comments