A214445
a(n) = Euler(2*n)*binomial(4*n,2*n).
Original entry on oeis.org
1, -6, 350, -56364, 17824950, -9334057876, 7308698191340, -7997684730384600, 11655857682806336550, -21824608434847162167300, 51054382673481634917970500, -145916894745749901373155951720, 500306549034304293474784779805500, -2026855002861172152744641068895033544
Offset: 0
A117414
An Euler triangle.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 48, 12, 1, 0, 1088, 272, 24, 1, 0, 39680, 9920, 880, 40, 1, 0, 2122752, 530688, 47104, 2160, 60, 1, 0, 156577792, 39144448, 3474688, 159488, 4480, 84, 1, 0, 15230058496, 3807514624, 337979392, 15514880, 436352, 8288, 112, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 1;
0, 48, 12, 1;
0, 1088, 272, 24, 1;
0, 39680, 9920, 880, 40, 1;
0, 2122752, 530688, 47104, 2160, 60, 1;
...
-
nn = 6; B[n_] := (2 n)!/2^n; e[z_] := Sum[z^n/B[n], {n, 0, nn}];
Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[
Series[e[(u - 1) z] 1/e[-z], {z, 0, nn}], {z, u}]] // Grid (* Geoffrey Critzer, Apr 26 2023 *)
Comments