cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A087083 Take unbounded lunar divisors of n as defined in A087029, add them using normal addition. See A087416 for their lunar sum.

Original entry on oeis.org

45, 44, 42, 39, 35, 30, 24, 17, 9, 495, 4500, 168, 154, 138, 120, 100, 78, 54, 28, 484, 492, 3916, 224, 198, 170, 140, 108, 74, 38, 462, 469, 476, 3276, 258, 220, 180, 138, 94, 48, 429, 435, 441, 447, 2613, 270, 220, 168, 114, 58, 385, 390, 395
Offset: 1

Views

Author

Marc LeBrun and N. J. A. Sloane, Oct 19 2003

Keywords

Extensions

More terms from David Applegate, Nov 07 2003

A087638 Number of lunar primes with <= n digits.

Original entry on oeis.org

0, 18, 99, 1638, 22095, 264312, 3159111, 36694950, 418286661
Offset: 1

Views

Author

Marc LeBrun and N. J. A. Sloane, Oct 26 2003

Keywords

Comments

Partial sums of A087636. - M. F. Hasler, Nov 15 2018

Crossrefs

Cf. A087062 (lunar product), A087097 (lunar primes), A087636 (#{n-digit primes}).

Programs

Extensions

a(6)-a(9) from David Applegate, Nov 07 2003

A087984 9-ish numbers (A011539) which are not lunar primes (A087097).

Original entry on oeis.org

9, 119, 129, 139, 149, 159, 169, 179, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 229, 239, 249, 259, 269, 279, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 339, 349, 359, 369, 379, 389, 390, 391, 392, 393, 394, 395, 396
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Oct 30 2003

Keywords

Comments

Three and four digit 9ish numbers are lunar primes iff the smallest digit is strictly smaller than the first and the last digit. This is no longer true from 10109 = 109 x 109 on (where x = lunar product).

Crossrefs

Cf. A011539, A087097. A133626 and A134211 are subsequences.

Programs

Formula

A011539 \ A087097. - M. F. Hasler, Nov 19 2018

A343040 Array T(n, k), n, k >= 0, read by antidiagonals; lunar addition table for the factorial base.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 3, 3, 3, 4, 3, 2, 3, 4, 5, 5, 3, 3, 5, 5, 6, 5, 4, 3, 4, 5, 6, 7, 7, 5, 5, 5, 5, 7, 7, 8, 7, 8, 5, 4, 5, 8, 7, 8, 9, 9, 9, 9, 5, 5, 9, 9, 9, 9, 10, 9, 8, 9, 10, 5, 10, 9, 8, 9, 10, 11, 11, 9, 9, 11, 11, 11, 11, 9, 9, 11, 11, 12, 11, 10, 9, 10, 11, 6, 11, 10, 9, 10, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, Apr 03 2021

Keywords

Comments

The i-th digit of T(n, k) in factorial base is the largest of the i-th digits of n and of k in factorial base.
For n = 0..23, the factorial and primorial base representations of n are the same; hence the date sections for this sequence and for A343044 are the same.

Examples

			Array T(n, k) begins:
  n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12
  ---+----------------------------------------------------
    0|   0   1   2   3   4   5   6   7   8   9  10  11  12
    1|   1   1   3   3   5   5   7   7   9   9  11  11  13
    2|   2   3   2   3   4   5   8   9   8   9  10  11  14
    3|   3   3   3   3   5   5   9   9   9   9  11  11  15
    4|   4   5   4   5   4   5  10  11  10  11  10  11  16
    5|   5   5   5   5   5   5  11  11  11  11  11  11  17
    6|   6   7   8   9  10  11   6   7   8   9  10  11  12
    7|   7   7   9   9  11  11   7   7   9   9  11  11  13
    8|   8   9   8   9  10  11   8   9   8   9  10  11  14
    9|   9   9   9   9  11  11   9   9   9   9  11  11  15
   10|  10  11  10  11  10  11  10  11  10  11  10  11  16
   11|  11  11  11  11  11  11  11  11  11  11  11  11  17
   12|  12  13  14  15  16  17  12  13  14  15  16  17  12
Array T(n, k) begins in factorial base:
  n\k|    0    1   10   11   20   21  100  101  110  111  120  121  200
  ---+-----------------------------------------------------------------
    0|    0    1   10   11   20   21  100  101  110  111  120  121  200
    1|    1    1   11   11   21   21  101  101  111  111  121  121  201
   10|   10   11   10   11   20   21  110  111  110  111  120  121  210
   11|   11   11   11   11   21   21  111  111  111  111  121  121  211
   20|   20   21   20   21   20   21  120  121  120  121  120  121  220
   21|   21   21   21   21   21   21  121  121  121  121  121  121  221
  100|  100  101  110  111  120  121  100  101  110  111  120  121  200
  101|  101  101  111  111  121  121  101  101  111  111  121  121  201
  110|  110  111  110  111  120  121  110  111  110  111  120  121  210
  111|  111  111  111  111  121  121  111  111  111  111  121  121  211
  120|  120  121  120  121  120  121  120  121  120  121  120  121  220
  121|  121  121  121  121  121  121  121  121  121  121  121  121  221
  200|  200  201  210  211  220  221  200  201  210  211  220  221  200
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, f=1); for (r=2, oo, if (n==0 && k==0, return (v), v+=max(n%r, k%r)*f; f*=r; n\=r; k\=r)) }

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = n.
T(n, n) = n.

A343044 Array T(n, k), n, k >= 0, read by antidiagonals; lunar addition table for the primorial base.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 3, 3, 3, 4, 3, 2, 3, 4, 5, 5, 3, 3, 5, 5, 6, 5, 4, 3, 4, 5, 6, 7, 7, 5, 5, 5, 5, 7, 7, 8, 7, 8, 5, 4, 5, 8, 7, 8, 9, 9, 9, 9, 5, 5, 9, 9, 9, 9, 10, 9, 8, 9, 10, 5, 10, 9, 8, 9, 10, 11, 11, 9, 9, 11, 11, 11, 11, 9, 9, 11, 11, 12, 11, 10, 9, 10, 11, 6, 11, 10, 9, 10, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, Apr 05 2021

Keywords

Comments

The i-th digit of T(n, k) in primorial base is the largest of the i-th digits of n and of k in primorial base.
For n = 0..23, the factorial and primorial base representations of n are the same; hence the date sections for this sequence and for A343040 are the same.

Examples

			Array T(n, k) begins:
  n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12
  ---+----------------------------------------------------
    0|   0   1   2   3   4   5   6   7   8   9  10  11  12
    1|   1   1   3   3   5   5   7   7   9   9  11  11  13
    2|   2   3   2   3   4   5   8   9   8   9  10  11  14
    3|   3   3   3   3   5   5   9   9   9   9  11  11  15
    4|   4   5   4   5   4   5  10  11  10  11  10  11  16
    5|   5   5   5   5   5   5  11  11  11  11  11  11  17
    6|   6   7   8   9  10  11   6   7   8   9  10  11  12
    7|   7   7   9   9  11  11   7   7   9   9  11  11  13
    8|   8   9   8   9  10  11   8   9   8   9  10  11  14
    9|   9   9   9   9  11  11   9   9   9   9  11  11  15
   10|  10  11  10  11  10  11  10  11  10  11  10  11  16
   11|  11  11  11  11  11  11  11  11  11  11  11  11  17
   12|  12  13  14  15  16  17  12  13  14  15  16  17  12
		

Crossrefs

Programs

  • PARI
    See Links section.

A087416 Take unbounded lunar divisors of n as defined in A087029, add them using lunar addition. See A087083 for their conventional sum.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 99, 99, 19, 19, 19, 19, 19, 19, 19, 19, 99, 99, 99, 29, 29, 29, 29, 29, 29, 29, 99, 99, 99, 99, 39, 39, 39, 39, 39, 39, 99, 99, 99, 99, 99, 49, 49, 49, 49, 49, 99, 99, 99, 99, 99, 99, 59, 59, 59, 59, 99, 99, 99, 99, 99, 99, 99, 69, 69, 69
Offset: 1

Views

Author

Marc LeBrun and N. J. A. Sloane, Oct 19 2003

Keywords

Comments

Two comments from David Applegate on lunar perfect numbers, Nov 08 2003: (Start)
If we define a perfect number by "n is lunarly perfect if Sum_{d|n} d == 2*n (both sum and * lunar)", no such numbers exist because 9|n, so the lunar sum of divisors ends in 9, but 2*n ends in 2.
If we define a perfect number by "n is lunarly perfect if lunar Sum_{d|n, d != n} d == n", no such numbers exist. For suppose n is perfect. n != 9 (since 9 is 9's only divisor). Then 9|n and 9 != n, so Sum_{d|n, d!=n} d ends in 9 and thus so does n. But 9ish numbers are not divisible by any single digit < 9. Thus n has no divisors of the same length as n, other than n itself. So Sum_{d|n, d!=n} d is one digit shorter than n. (End)

Extensions

More terms from David Applegate, Nov 07 2003

A088469 Number of distinct lunar prime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

David Applegate, Nov 11 2003

Keywords

Comments

a(n) is the number of lunar primes p that are lunar divisors of n. (Multiplicity is not taken into account. Each prime is counted at most once.)

Examples

			10 = 9*90 and 90 is prime. 90 is the only prime divisor of 10, so a(10) = 1.
		

Crossrefs

A088471 Lunar product of distinct lunar prime divisors of n.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 90, 123456789987654321, 19, 19, 19, 19, 19, 19, 19, 19, 90, 91, 2345678998765432, 29, 29, 29, 29, 29, 29, 29, 90, 91, 92, 34567899876543, 39, 39, 39, 39, 39, 39, 90, 91, 92, 93, 456789987654, 49, 49, 49, 49, 49, 90, 91, 92
Offset: 1

Views

Author

David Applegate, Nov 11 2003

Keywords

Comments

a(n) = Product_{p is a lunar divisor of n} p. (Each prime appears at most once in this product.)

Crossrefs

A261684 Array T(n,k) = lunar product n*k (n >= 0, k >= 0) read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 0, 10, 2, 3, 4, 5, 5, 4, 3, 2, 10, 0, 0, 11, 10, 3, 4, 5, 6, 5, 4, 3, 10, 11, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2015

Keywords

Comments

See A087061 for definition. Note that 0+x = x and 9*x = x for all x.

Examples

			Lunar multiplication table begins:
0 0 0 0 0 0 ...
0 1 1 1 1 1 ...
0 1 2 2 2 2 ...
0 1 2 3 3 3 ...
0 1 2 3 4 4 ...
0 1 2 3 4 5 ...
....
		

Crossrefs

Cf. A087061 (addition).
See A087062 for a version that excludes the zero row and column.
Similar to but different from A003983.

Programs

  • Maple
    # convert decimal to string:
    rec := proc(n) local t0,t1,e,l; if n <= 0 then RETURN([[0],1]); fi; t0 := n mod 10; t1 := (n-t0)/10; e := [t0]; l := 1; while t1 <> 0 do t0 := t1 mod 10; t1 := (t1-t0)/10; l := l+1; e := [op(e),t0]; od; RETURN([e,l]); end;
    # convert string to decimal:
    cer := proc(ep) local i,e,l,t1; e := ep[1]; l := ep[2]; t1 := 0; if l <= 0 then RETURN(t1); fi; for i from 1 to l do t1 := t1+10^(i-1)*e[i]; od; RETURN(t1); end;
    # lunar addition:
    dadd := proc(m,n) local i,r1,r2,e1,e2,l1,l2,l,l3,t0; r1 := rec(m); r2 := rec(n); e1 := r1[1]; e2 := r2[1]; l1 := r1[2]; l2 := r2[2]; l := max(l1,l2); l3 := min(l1,l2); t0 := array(1..l); for i from 1 to l3 do t0[i] := max(e1[i],e2[i]); od; if l>l3 then for i from l3+1 to l do if l1>l2 then t0[i] := e1[i]; else t0[i] := e2[i]; fi; od; fi; cer([t0,l]); end;
    # lunar multiplication:
    dmul := proc(m,n) local k,i,j,r1,r2,e1,e2,l1,l2,l,t0; r1 := rec(m); r2 := rec(n); e1 := r1[1]; e2 := r2[1]; l1 := r1[2]; l2 := r2[2]; l := l1+l2-1; t0 := array(1..l); for i from 1 to l do t0[i] := 0; od; for i from 1 to l2 do for j from 1 to l1 do k := min(e2[i],e1[j]); t0[i+j-1] := max(t0[i+j-1],k); od; od; cer([t0,l]); end;
    # to produce the b-file:
    M:=199; c:=0; for n from 0 to M do for k from 0 to n do lprint(c,dmul(n-k,k)); c:=c+1; od: od:

A342765 Array T(n, k), n, k > 0, read by antidiagonals; T(n, k) = max(A006530(n), A006530(k)) * T(n/A006530(n), k/A006530(k)) with T(1, 1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 6, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 10, 10, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 9, 12, 14, 10, 10, 14, 12, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 20, 14, 14, 20, 9, 10, 11, 12
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

To compute T(n, k):
- write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
- take the largest prime number in each column and multiply back,
- for example, for T(12, 14):
12 -> 2 2 3
14 -> 2 7
-----
2 2 7 -> 28 = T(12, 14)
This sequence is closely related to lunar addition (A087061):
- let n and k be two p-smooth numbers,
- let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
- let g be the inverse of f,
- then for any p-smooth numbers n and k, T(n, k) = g(f(n) "+" f(k)) where "+" denotes lunar addition in base p+1,
- see A342767 for the corresponding multiplication.

Examples

			Array T(n, k) begins:
  n\k|   1   2   3   4   5   6   7   8   9  10  11  12  13  14
  ---+--------------------------------------------------------
    1|   1   2   3   4   5   6   7   8   9  10  11  12  13  14
    2|   2   2   3   4   5   6   7   8   9  10  11  12  13  14
    3|   3   3   3   6   5   6   7  12   9  10  11  12  13  14
    4|   4   4   6   4  10   6  14   8   9  10  22  12  26  14
    5|   5   5   5  10   5  10   7  20  15  10  11  20  13  14
    6|   6   6   6   6  10   6  14  12   9  10  22  12  26  14
    7|   7   7   7  14   7  14   7  28  21  14  11  28  13  14
    8|   8   8  12   8  20  12  28   8  18  20  44  12  52  28
    9|   9   9   9   9  15   9  21  18   9  15  33  18  39  21
   10|  10  10  10  10  10  10  14  20  15  10  22  20  26  14
   11|  11  11  11  22  11  22  11  44  33  22  11  44  13  22
   12|  12  12  12  12  20  12  28  12  18  20  44  12  52  28
   13|  13  13  13  26  13  26  13  52  39  26  13  52  13  26
   14|  14  14  14  14  14  14  14  28  21  14  22  28  26  14
		

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1, 1, my (p=factor(n)[,1]~); p[#p])
    T(n, k) = if (n==1 || k==1, max(n, k), my (p=gpf(n), q=gpf(k)); max(p, q)*T(n/p, k/q))

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 1) = n.
T(n, n) = n.
A001222(T(n, k)) = max(A001222(n), A001222(k)).
A006530(T(n, k)) = max(A006530(n), A006530(k)).
Previous Showing 11-20 of 41 results. Next