cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A087121 Take bounded lunar divisors of n as defined in A087028, add them using lunar addition. See A087082 for their conventional sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 199, 109, 109, 109, 109, 109, 109, 109, 109, 109, 199, 199
Offset: 1

Views

Author

Marc LeBrun and N. J. A. Sloane, Oct 21 2003

Keywords

Comments

Differs from A087052 after 100 terms.

Crossrefs

A162672 Lunar product 19*n.

Original entry on oeis.org

0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150
Offset: 0

Views

Author

Emilie Hogan, Dennis Hou, Kellen Myers and N. J. A. Sloane, Apr 09 2010

Keywords

Comments

Since 19 is the smallest lunar prime, this is a kind of lunar analog of the even numbers.
As the b-file shows, this sequence is not monotonic and contains repetitions.

Examples

			19 * 3 = 13, so 13 is a member. 1109 has just two divisors, 9 and 109, so 1109 is not a member.
		

Crossrefs

Formula

For a two-digit number n, the lunar product 19*n is obtained by putting a 1 in front of n.

Extensions

Entry revised by N. J. A. Sloane, May 28 2011, to correct errors in some of the comments

A189506 Irregular triangle read by rows in which row n (n >= 1) lists the base-10 lunar divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2011

Keywords

Examples

			The first 11 rows give the divisors of 1 through 11:
1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9
4 5 6 7 8 9
5 6 7 8 9
6 7 8 9
7 8 9
8 9
9
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90
1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 41 ... 99 (= all zeroless 1- and 2-digit numbers).
		

Crossrefs

Cf. A087062 (lunar product).
Row n has A087029(n) terms.

Programs

  • PARI
    A189506_row(n)={my(d=digits(n),m=vecmin(d),c=vector(#d,i,List()),K,t); for(L=1,#d,K=#d-L+1;forvec(v=vector(L,i,[max(m,i==1),9]), L<=K&& listput(c[L],fromdigits(v))&&next; t=fromdigits(v); forstep(i=#c[K],1,-1, A087062(c[K][i],t)==n||next; listput(c[L],t);break)); L>=K&&forstep(i=#c[K],1,-1,t=c[K][i]; forstep(j=#c[L],1,-1,A087062(c[L][j],t)==n&&next(2)); listpop(c[K],i))); Set(concat(c))} \\ M. F. Hasler, Nov 15 2018

Extensions

Minor edits by M. F. Hasler, Nov 15 2018

A189788 Base-10 lunar factorials: a(n) = (lunar) Product_{i=1..n} i.

Original entry on oeis.org

9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 110, 1110, 11110, 111110, 1111110, 11111110, 111111110, 1111111110, 11111111110, 111111111100, 1111111111100, 11111111111100, 111111111111100, 1111111111111100, 11111111111111100, 111111111111111100, 1111111111111111100, 11111111111111111100, 111111111111111111100, 1111111111111111111000
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2011

Keywords

Comments

0!, the empty product, equals 9 (the multiplicative identity) by convention.

Examples

			4! = 1 X 2 X 3 X 4 = 1, where X is lunar multiplication, A087062.
		

Crossrefs

Cf. A087062 (lunar product), A087019 (lunar squares).

Programs

  • PARI
    apply( A189788(n)=if(n>9,for(k=10,n-1,n=A087062(n,k));n,9^!n), [0..30]) \\ M. F. Hasler, Nov 15 2018
    
  • Python
    # uses lunar_mul and lunar_add from A087062
    from functools import reduce
    def a(n): return reduce(lunar_mul, [9]+list(range(1, n+1)))
    print([a(n) for n in range(31)]) # Michael S. Branicky, Sep 01 2021
    
  • Python
    # uses lunar_mul and lunar_add from A087062
    from itertools import accumulate
    def aupton(nn): return list(accumulate([9]+list(range(1, nn+1)), lunar_mul))
    print(aupton(30)) # Michael S. Branicky, Sep 01 2021

Extensions

a(0) = 9 prepended and minor edits by M. F. Hasler, Nov 15 2018

A321788 Product of semiprime factors using lunar arithmetic.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 11, 5, 12, 11, 12, 5, 12, 13, 22, 7, 13, 11, 13, 22, 21, 13, 23, 22, 11, 21, 15, 22, 23, 13, 31, 22, 15, 22, 33, 23, 22, 17, 111, 21, 31, 33, 17, 22, 33, 21, 111, 25, 22, 31, 22, 33, 23, 22, 113, 33, 22, 31, 35, 111, 22, 33, 101, 27, 41, 102, 111, 31, 102, 43, 31, 102, 33, 113, 112, 45
Offset: 1

Views

Author

G. L. Honaker, Jr., Nov 18 2018

Keywords

Examples

			a(16)=22 because the 16th semiprime is 46 = 2*23. In lunar arithmetic the product becomes 22.
		

Crossrefs

Programs

  • Mathematica
    ladd[x_, y_] := FromDigits[MapThread[Max, IntegerDigits[#, 10, Max@ IntegerLength [{x, y}]] & /@ {x, y}]]; lmult[x_, y_] := Fold[ladd, 0, Table[10^i, {i, IntegerLength[y] - 1, 0, -1}]*FromDigits /@ Transpose@Partition[Min[##] & @@@ Tuples[IntegerDigits[{x, y}]], IntegerLength[y]]]; s={}; Do[If[PrimeOmega[n]==2, f=FactorInteger[n]; x=f[[1,1]]; y=n/x; m=lmult[x,y]; AppendTo[s, m]],{n,1,300}]; s (* Amiram Eldar, Nov 19 2018 after Davin Park at A087062 *)

Formula

a(n) = A087062(A084126(n), A084127(n)). - Michel Marcus, Nov 20 2018

A088475 Numbers n such that the lunar sum of the distinct lunar prime divisors of n is >= n.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

David Applegate, Nov 11 2003

Keywords

Examples

			The only lunar prime that divides 10 is 90: 90*1 = 10 (cf. A087061, A087062, A087097) and 90 >= 10, so 10 is a member. - _N. J. A. Sloane_, Mar 04 2007, corrected Oct 07 2010.
		

Crossrefs

Complement is A088472, which starts 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 110, 112, ...

Extensions

Definition made more precise by Marc LeBrun, Mar 04 2007

A134496 Numbers that are not lunar pseudoprimes.

Original entry on oeis.org

100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156
Offset: 1

Views

Author

N. J. A. Sloane, Aug 15 2010

Keywords

Comments

A number n is a lunar pseudoprime if it has no lunar divisors with length in the range 2, 3, ..., len(n)-1.
So the present sequence consists of the numbers which do have a lunar divisor of length in the range 2, 3, ..., len(n)-1.
Computed using David Applegate's programs.

Examples

			100 = 10*10.
		

Crossrefs

Cf. A087062, etc.

A171816 Smallest number of rank n in the poset of lunar numbers.

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000
Offset: 0

Views

Author

Keywords

Comments

We have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014

Crossrefs

Cf. A087061 (definition of lunar sum and product), A087062 (table of lunar product), A087097 (lunar (formerly dismal) primes).

Extensions

Edited by M. F. Hasler, Nov 12 2017

A235641 Number of n-digit lunar primes obtained by promoting the binary templates.

Original entry on oeis.org

0, 18, 81, 1539, 17661, 135489
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 20 2014

Keywords

Crossrefs

Previous Showing 21-29 of 29 results.