cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A087180 Number partition numbers <= P(n) of the form 3*k (P = A000041).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 15, 15, 16, 16, 16, 16, 17, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 28, 28, 28, 28, 28, 29, 29, 30, 31, 31, 31, 31, 32
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Boole[Mod[PartitionsP[n], 3] == 0], {n, 0, 100}]] (* Amiram Eldar, May 22 2025 *)

Formula

a(n) + A087181(n) + A087182(n) = n + 1.

A087184 Partition numbers of the form 3*k+1.

Original entry on oeis.org

1, 1, 7, 22, 385, 490, 1255, 3010, 3718, 12310, 17977, 21637, 75175, 89134, 204226, 386155, 451276, 831820, 1300156, 1741630, 5392783, 6185689, 10619863, 18004327, 20506255, 34262962, 49995925, 64112359, 104651419, 150198136
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[PartitionsP[Range[0, 100]], Mod[#, 3] == 1 &] (* Amiram Eldar, May 22 2025 *)

Formula

a(n) = A000041(A237276(n)). - Amiram Eldar, May 22 2025

A087185 Partition numbers of the form 3*k+2.

Original entry on oeis.org

2, 5, 11, 56, 77, 101, 176, 1958, 4565, 6842, 26015, 53174, 124754, 173525, 526823, 715220, 966467, 2012558, 2323520, 2679689, 3554345, 7089500, 9289091, 12132164, 13848650, 23338469, 26543660, 30167357, 38887673, 56634173
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[PartitionsP[Range[200]],Divisible[#-2,3]&] (* Harvey P. Dale, Apr 22 2016 *)

Formula

a(n) = A000041(A237277(n)). - Amiram Eldar, May 22 2025

A127174 Numbers n of the form 3*k such that partition number of n is also of the form 3*k.

Original entry on oeis.org

3, 9, 21, 24, 30, 33, 39, 48, 51, 57, 63, 75, 102, 111, 129, 138, 147, 162, 180, 189, 195, 198, 207, 222, 225, 231, 240, 249, 267, 270, 288, 297, 330, 336, 339, 342, 348, 351, 354, 357, 363, 369, 372, 381, 396, 399, 402, 405, 411, 429, 432, 465, 468, 477, 480
Offset: 1

Views

Author

Zak Seidov, Apr 05 2007

Keywords

Comments

Subset of A083214. Or, intersection of A083214 and A008585.

Crossrefs

Programs

  • Maple
    with(combinat): a:=proc(k): if numbpart(3*k) mod 3 = 0 then 3*k else fi end: seq(a(n),n=1..200); # Emeric Deutsch, Apr 16 2007
  • Mathematica
    Select[Range[3,600,3],Mod[PartitionsP[ # ],3]==0&]
Previous Showing 11-14 of 14 results.