cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A127582 a(n) = the smallest prime number of the form k*2^n - 1, for k >= 1.

Original entry on oeis.org

2, 3, 3, 7, 31, 31, 127, 127, 1279, 3583, 5119, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Examples

			a(0)=2 because 2 = 3*2^0 - 1 is prime.
a(1)=3 because 3 = 2*2^1 - 1 is prime.
a(2)=3 because 3 = 1*2^2 - 1 is prime.
a(3)=7 because 7 = 1*2^3 - 1 is prime.
a(4)=31 because 31 = 2*2^4 - 1 is prime.
		

Crossrefs

A087522 is identical except for a(1).

Programs

  • Maple
    p:= 2: A[0]:= 2:
    for n from 1 to 100 do
      if p+1 mod 2^n = 0 then A[n]:= p
      else
        p:=p+2^(n-1);
        while not isprime(p) do p:= p+2^n od:
        A[n]:= p;
      fi
    od:
    seq(A[i],i=0..100); # Robert Israel, Jan 13 2017
  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 0, 50}]; a (* Artur Jasinski, Jan 19 2007 *)

Formula

a(n) << 37^n by Xylouris's improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

Extensions

Edited by Don Reble, Jun 11 2007
Further edited by N. J. A. Sloane, Jul 03 2008

A127597 Least number k such that k 4^n + (4^n-1)/3 is prime.

Original entry on oeis.org

2, 1, 0, 2, 3, 2, 4, 4, 3, 10, 3, 3, 2, 7, 2, 25, 6, 17, 4, 13, 3, 20, 36, 20, 11, 27, 66, 23, 39, 24, 19, 13, 3, 10, 6, 122, 71, 58, 24, 13, 3, 2, 41, 10, 6, 32, 58, 17, 4, 79, 26, 55, 36, 48, 31, 28, 9, 2, 76, 24, 32, 28, 63, 20, 37, 9, 2, 7, 39, 10, 91, 47
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k], {n, 0, 50}]; a (*Artur Jasinski*)
    lnk[n_]:=Module[{k=0,n4=4^n},While[!PrimeQ[k*n4+(n4-1)/3],k++];k]; Array[ lnk,60,0] (* Harvey P. Dale, May 28 2018 *)
  • Python
    from sympy import isprime
    def a(n):
        k, fourn = 0, 4**n
        while not isprime(k*fourn + (fourn-1)//3): k += 1
        return k
    print([a(n) for n in range(72)]) # Michael S. Branicky, May 18 2022

Extensions

Offset corrected and a(51) and beyond from Michael S. Branicky, May 18 2022

A127598 Least primes of the form k 4^n + (4^n-1)/3.

Original entry on oeis.org

2, 5, 5, 149, 853, 2389, 17749, 70997, 218453, 2708821, 3495253, 13981013, 39146837, 492131669, 626349397, 27201459541, 27201459541, 297784399189, 297784399189, 3665038759253, 3665038759253, 89426945725781
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k 4^n + (4^n - 1)/3], {n, 0, 50}]; a (*Artur Jasinski*)

A307503 Least prime containing at least n consecutive 1's in its binary representation.

Original entry on oeis.org

2, 2, 3, 7, 31, 31, 127, 127, 1021, 3583, 4093, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 4194301, 14680063, 16777213, 67108859, 536870909, 536870909, 536870909, 536870909, 2147483647, 2147483647, 2147483647, 2147483647, 21474836479
Offset: 0

Views

Author

John Mason, Apr 11 2019

Keywords

Comments

For n > 0, a(n) = A000040(m) for the lowest m such that A090000(m) >= n.
a(n) = A087522(n) for n = 0 through 7, and in all other cases when a(n) is a base 2 repunit (Mersenne) prime.

Examples

			a(0) = 2, the smallest prime containing >= 0 1's.
a(1) = 2, the smallest prime containing >= 1 consecutive 1's.
a(2) = 3, the smallest prime containing >= 2 consecutive 1's.
		

Crossrefs

Cf. A090593 (with exactly n consecutive ones).

Programs

  • PARI
    nbo(n)=if (n==0, return (0)); n>>=valuation(n, 2); if(n<2, return(n)); my(e=valuation(n+1, 2)); max(e, nbo(n>>e)); \\ A038374
    a(n) = my(p=2); while(nbo(p) < n, p=nextprime(p+1)); p; \\ Michel Marcus, Apr 14 2019

Formula

a(n) <= A201914(n). - Rémy Sigrist, Apr 11 2019
a(n) = min_{k>=n} A090593(k). - Chai Wah Wu, Apr 26 2019

Extensions

a(28)-a(32) from Chai Wah Wu, Apr 26 2019
Previous Showing 11-14 of 14 results.