A361044
Triangle read by rows. T(n, k) is the k-th Lie-Betti number of the friendship (or windmill) graph, for n >= 1.
Original entry on oeis.org
1, 3, 8, 12, 8, 3, 1, 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1, 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1
Offset: 1
The triangle T(n, k) starts:
[1] 1, 3, 8, 12, 8, 3, 1;
[2] 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1;
[3] 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1;
-
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
def BettiNumbers(graph):
D = {}
for edge in graph.edges():
e = "x" + str(edge[0])
f = "x" + str(edge[1])
D[(e, f)] = {e + f : 1}
C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
Stratified().Nilpotent())
L = LieAlgebra(QQ, D, nilpotent=True, category=C)
H = L.cohomology()
d = L.dimension() + 1
return [H[n].dimension() for n in range(d)]
def A361044_row(n):
return BettiNumbers(graphs.FriendshipGraph(n))
for n in range(1, 4): print(A361044_row(n))
A364579
Fifth Lie-Betti number of a path graph on n vertices.
Original entry on oeis.org
0, 0, 1, 11, 48, 140, 329, 668, 1223, 2074, 3316, 5060, 7434, 10584, 14675, 19892, 26441, 34550, 44470, 56476, 70868, 87972, 108141, 131756, 159227, 190994, 227528, 269332, 316942, 370928, 431895, 500484, 577373, 663278, 758954
Offset: 1
-
def A364579_up_to(n):
values = [0, 0, 1, 11]
for i in range(5, n+1):
result = (i**5 + 30*i**4 - 145*i**3 - 270*i**2 + 2424*i - 3360)/120
values.append(int(result))
return values
A364946
Sixth Lie-Betti number of a path graph on n vertices.
Original entry on oeis.org
0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786, 20482, 31532, 46952, 67957, 95983, 132710, 180086, 240352, 316068, 410140, 525848, 666875, 837337, 1041814, 1285382, 1573646, 1912774, 2309532, 2771320, 3306209, 3922979, 4631158, 5441062
Offset: 1
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
- Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- Eric Weisstein's World of Mathematics, Path Graph.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786}, 50] (* Paolo Xausa, May 28 2024 *)
-
def A364946_up_to(n):
values = [0, 0, 0, 4,33]
for i in range(6, n+1):
result = (i**6 + 45*i**5 - 125*i**4 - 2865*i**3 + 23524*i**2 - 76740*i + 98640)/720
values.append(int(result))
return values
A361014
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the hypercube graph on 2^(n-1) vertices, n >= 1, k >= 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 8, 64, 258, 986, 2870, 6134, 11586, 18830, 23832, 25078, 23832, 18830, 11586, 6134, 2870, 986, 258, 64, 8, 1
Offset: 1
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=1: 1 1
n=2: 1 2 2 1
n=3: 1 4 14 25 28 25 14 4 1
n=4: 1 8 64 258 986 2870 6134 11586 18830 23832 25078 23832 18830 11586 6134
...
A368135
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.
Original entry on oeis.org
1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
Offset: 2
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=2: 1 2 2 1
n=3: 1 4 11 16 16 11 4 1
n=4: 1 7 33 95 212 344 444 444 344 212 95 33 7 1
n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
-
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
def BettiNumbers(graph):
D = {}
for edge in graph.edges():
e = "x" + str(edge[0])
f = "x" + str(edge[1])
D[(e, f)] = {e + f : 1}
C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
Stratified().Nilpotent())
L = LieAlgebra(QQ, D, nilpotent=True, category=C)
H = L.cohomology()
d = L.dimension() + 1
return [H[n].dimension() for n in range(d)]
# Example usage:
n = 5
X = BettiNumbers(graphs.FibonacciTree(n))
Comments