cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A361044 Triangle read by rows. T(n, k) is the k-th Lie-Betti number of the friendship (or windmill) graph, for n >= 1.

Original entry on oeis.org

1, 3, 8, 12, 8, 3, 1, 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1, 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1
Offset: 1

Views

Author

Peter Luschny, Mar 01 2023

Keywords

Comments

The triangle is inspired by Samuel J. Bevins's A360571.
The friendship graph is constructed by joining n copies of the cycle graph C_3 at a common vertex. F_1 is isomorphic to C_3 (the triangle graph) and has 3 vertices, F_2 is the butterfly graph and has 5 vertices and if n > 2 then F_n has 2*n + 1 vertices.

Examples

			The triangle T(n, k) starts:
[1] 1, 3, 8, 12, 8, 3, 1;
[2] 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1;
[3] 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1;
		

Crossrefs

Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
    def BettiNumbers(graph):
        D = {}
        for edge in graph.edges():
            e = "x" + str(edge[0])
            f = "x" + str(edge[1])
            D[(e, f)] = {e + f : 1}
        C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
             Stratified().Nilpotent())
        L = LieAlgebra(QQ, D, nilpotent=True, category=C)
        H = L.cohomology()
        d = L.dimension() + 1
        return [H[n].dimension() for n in range(d)]
    def A361044_row(n):
        return BettiNumbers(graphs.FriendshipGraph(n))
    for n in range(1, 4): print(A361044_row(n))

A364579 Fifth Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 0, 1, 11, 48, 140, 329, 668, 1223, 2074, 3316, 5060, 7434, 10584, 14675, 19892, 26441, 34550, 44470, 56476, 70868, 87972, 108141, 131756, 159227, 190994, 227528, 269332, 316942, 370928, 431895, 500484, 577373, 663278, 758954
Offset: 1

Views

Author

Samuel J. Bevins, Aug 14 2023

Keywords

Comments

Sequence T(n,5) in A360571.

Crossrefs

Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230, A362007.

Programs

  • Python
    def A364579_up_to(n):
        values = [0, 0, 1, 11]
        for i in range(5, n+1):
            result = (i**5 + 30*i**4 - 145*i**3 - 270*i**2 + 2424*i - 3360)/120
            values.append(int(result))
        return values

Formula

a(1) = a(2) = 0, a(3) = 1, a(4) = 11, a(n) = (n^5 + 30*n^4 - 145*n^3 - 270*n^2 + 2424*n - 3360)/120 for n >= 5.

A364946 Sixth Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786, 20482, 31532, 46952, 67957, 95983, 132710, 180086, 240352, 316068, 410140, 525848, 666875, 837337, 1041814, 1285382, 1573646, 1912774, 2309532, 2771320, 3306209, 3922979, 4631158, 5441062
Offset: 1

Views

Author

Samuel J. Bevins, Aug 14 2023

Keywords

Comments

Sequence T(n,6) in A360571.

Crossrefs

Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230, A362007, A364579.

Programs

  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786}, 50] (* Paolo Xausa, May 28 2024 *)
  • Python
    def A364946_up_to(n):
        values = [0, 0, 0, 4,33]
        for i in range(6, n+1):
            result = (i**6 + 45*i**5 - 125*i**4 - 2865*i**3 + 23524*i**2 - 76740*i + 98640)/720
            values.append(int(result))
        return values

Formula

a(1) = a(2) = a(3) = 0, a(4) = 4, a(5) = 33, a(n) = (n^6 + 45*n^5 - 125*n^4 - 2865*n^3 + 23524*n^2 - 76740*n + 98640)/720 for n >= 6.
G.f.: x^4*(4 + 5*x - 7*x^2 - 3*x^3 - 4*x^4 + 15*x^5 - 15*x^6 + 7*x^7 - x^8)/(1 - x)^7. - Stefano Spezia, Aug 29 2023

A361014 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the hypercube graph on 2^(n-1) vertices, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 8, 64, 258, 986, 2870, 6134, 11586, 18830, 23832, 25078, 23832, 18830, 11586, 6134, 2870, 986, 258, 64, 8, 1
Offset: 1

Views

Author

Samuel J. Bevins, Feb 28 2023

Keywords

Examples

			Triangle begins:
   k=0 1  2   3   4    5    6     7     8     9    10    11    12    13   14
n=1: 1 1
n=2: 1 2  2   1
n=3: 1 4 14  25  28   25   14     4     1
n=4: 1 8 64 258 986 2870 6134 11586 18830 23832 25078 23832 18830 11586 6134
...
		

Crossrefs

Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    # uses[betti_numbers, LieAlgebraFromGraph from A360571]
    def A360936_row(n):
        if n == 1: return [1, 1]
        return betti_numbers(LieAlgebraFromGraph(graphs.CubeGraph(n-1)))

A368135 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.

Original entry on oeis.org

1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
Offset: 2

Views

Author

Samuel J. Bevins, Jan 11 2024

Keywords

Examples

			Triangle begins:
  k=0 1  2  3   4   5    6    7    8    9    10    11   12    13   14   15
n=2: 1 2   2  1
n=3: 1 4  11  16   16   11     4     1
n=4: 1 7  33  95  212  344   444   444   344   212     95     33      7      1
n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
		

Crossrefs

Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
    def BettiNumbers(graph):
        D = {}
        for edge in graph.edges():
            e = "x" + str(edge[0])
            f = "x" + str(edge[1])
            D[(e, f)] = {e + f : 1}
        C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
             Stratified().Nilpotent())
        L = LieAlgebra(QQ, D, nilpotent=True, category=C)
        H = L.cohomology()
        d = L.dimension() + 1
        return [H[n].dimension() for n in range(d)]
    # Example usage:
    n = 5
    X = BettiNumbers(graphs.FibonacciTree(n))
Previous Showing 11-15 of 15 results.