cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A349215 a(n) = Sum_{d|n} d^c(d), where c is the prime characteristic (A010051).

Original entry on oeis.org

1, 3, 4, 4, 6, 7, 8, 5, 5, 9, 12, 9, 14, 11, 10, 6, 18, 9, 20, 11, 12, 15, 24, 11, 7, 17, 6, 13, 30, 15, 32, 7, 16, 21, 14, 12, 38, 23, 18, 13, 42, 17, 44, 17, 12, 27, 48, 13, 9, 11, 22, 19, 54, 11, 18, 15, 24, 33, 60, 19, 62, 35, 14, 8, 20, 21, 68, 23, 28, 19, 72, 15, 74, 41, 12
Offset: 1

Views

Author

Wesley Ivan Hurt, Nov 10 2021

Keywords

Comments

For each divisor d of n, add d if d is prime, otherwise add 1. For example, a(6) = 1 + 2 + 3 + 1 = 7.

Crossrefs

Inverse Moebius transform of A089026.
Cf. A010051, A000005 (tau), A008472 (sopf), A001221 (omega).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^Boole[PrimeQ[#]] &]; Array[a, 75] (* Amiram Eldar, Nov 11 2021 *)
  • PARI
    a(n) = sumdiv(n, d, if (isprime(d), d, 1)); \\ Michel Marcus, Nov 11 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A349215(n):
        fs = factorint(n)
        return sum(a-1 for a in fs.keys())+prod(1+d for d in fs.values()) # Chai Wah Wu, Nov 11 2021

Formula

a(n) = A000005(n)+A008472(n)-A001221(n). - Chai Wah Wu, Nov 11 2021
a(p) = p+1 for primes p. - Wesley Ivan Hurt, Nov 28 2021

A369119 a(n) = (n + 1)^[is_prime(n + 1)] * n!.

Original entry on oeis.org

1, 2, 6, 6, 120, 120, 5040, 5040, 40320, 362880, 39916800, 39916800, 6227020800, 6227020800, 87178291200, 1307674368000, 355687428096000, 355687428096000, 121645100408832000, 121645100408832000, 2432902008176640000, 51090942171709440000
Offset: 0

Views

Author

Peter Luschny, Jan 14 2024

Keywords

Crossrefs

Cf. A089026, A000142, A347425, A000367/A002445 (Bernoulli(2n)).

Programs

  • Mathematica
    A369119[n_] := n! If[PrimeQ[n+1], n+1, 1];
    Array[A369119, 25, 0] (* Paolo Xausa, Jan 15 2024 *)
  • SageMath
    def A369119(n): return (n+1)^is_prime(n+1)*factorial(n)

Formula

a(2*n)*Bernoulli(2*n) = A347425(n).

A372112 Rad-transform of the squarefree numbers A005117 (see Comments).

Original entry on oeis.org

1, 2, 3, 5, 1, 7, 1, 11, 13, 1, 1, 17, 19, 1, 1, 23, 1, 29, 1, 31, 1, 1, 1, 37, 1, 1, 41, 1, 43, 1, 47, 1, 53, 1, 1, 1, 59, 61, 1, 1, 1, 67, 1, 1, 71, 73, 1, 1, 1, 79, 1, 83, 1, 1, 1, 89, 1, 1, 1, 1, 97, 101, 1, 103, 1, 1, 107, 109, 1, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 1
Offset: 1

Views

Author

David James Sycamore, Apr 19 2024

Keywords

Comments

For a sequence A with terms a(1), a(2), a(3).... , let R(0) = 1, and for k >= 1 let R(k) = rad(a(1)*a(2)*...*a(k)). Define the Rad-transform of A to be R(n)/R(n-1); n >= 1, where rad is A007947. This sequence is the Rad transform of the squarefree numbers, A = A005117; see Example.
The sequence consists of only 1's and primes.
Sequence is obtained directly from A005117 by leaving all primes and a(1) = 1 untouched, and replacing all composite squarefree numbers with 1. Alternatively: in A000027, delete all squarefull numbers (A013929), replace all squarefree composites with 1, leave primes untouched and concatenate.

Examples

			For A005117, R(k) (k >= 0) is 1 U A128040. That is, 1,1,2,6,30,30,210,... from which: a(1) = 1/1 = 1, a(2) = 2/1 = 2, a(3) = 6/2 = 3, 4(4) = 30/6 = 5, a(5) = 30/30 = 1, and so on. Note that the first term of R(k) is 1, the empty product (product of the first 0 terms of A005117).
		

Crossrefs

Programs

  • Mathematica
    k = r = s = 1; f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]]; Reap[Do[While[! SquareFreeQ[k], k++]; s = f[s*f[k]]; Sow[s/r]; r = s; k++, {n, 120}] ][[-1, 1]] (* Michael De Vlieger, Apr 19 2024 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = my(v = select(issquarefree, [1..nn])); my(w = vector(#v, k, rad(prod(i=1, k, v[i])))); concat(1, vector(#w-1, k, w[k+1]/w[k])); \\ Michel Marcus, Apr 19 2024
    
  • Python
    from math import isqrt
    from sympy import mobius, isprime
    def A372112(n):
        def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m if isprime(m) else 1 # Chai Wah Wu, Dec 23 2024

Extensions

More terms from Michel Marcus, Apr 19 2024

A133255 Triangle with a minimum occurrence of prime powers for which the least common multiple of the rows will give the terms in A003418.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 3, 1, 1, 1, 4, 3, 1, 5, 1, 1, 4, 3, 1, 5, 1, 1, 1, 4, 3, 1, 5, 1, 7, 1, 1, 8, 3, 1, 5, 1, 7, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 11, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 11, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 11, 1
Offset: 1

Views

Author

Mats Granvik, Oct 14 2007

Keywords

Comments

Checked up to 29th row. Similar to A133232 and A133233. In this table the prime powers with the same base are in the same column. A prime power occurs in the table: (base of prime power-1)*(the prime power).

Examples

			lcm{1}= 1
lcm{1,1} = 1
lcm{1,1,2} = 2
lcm{1,1,2,3} = 6
lcm{1,1,4,3,1} = 12
lcm{1,1,4,3,1,5} = 60
lcm{1,1,4,3,1,5,1} = 60
lcm{1,1,4,3,1,5,1,7} = 420
lcm{1,1,8,3,1,5,1,7,1} = 840
lcm{1,1,8,9,1,5,1,7,1,1} = 2520
1 = 1
1*1 = 1
1*1*2 = 2
1*1*2*3 = 6
1*1*4*3*1 = 12
1*1*4*3*1*5 = 60
1*1*4*3*1*5*1 = 60
1*1*4*3*1*5*1*7 = 420
1*1*8*3*1*5*1*7*1 = 840
1*1*8*9*1*5*1*7*1*1 = 2520
		

Crossrefs

Programs

Formula

T(n,k) = if k=1 then 1 elseif n-1>=(A089026(n-1))^0 and n-1<(A089026(n-1))^1 then (A089026(n-1))^0 elseif n-1>=(A089026(n-1))^1 and n-1<(A089026(n-1))^2 then (A089026(n-1))^1 elseif n-1>=(A089026(n-1))^2 and n-1<(A089026(n-1))^3 then (A089026(n-1))^2 elseif n-1>=(A089026(n-1))^3 and n-1<(A089026(n-1))^4 then (A089026(n-1))^3 elseif n-1>=(A089026(n-1))^4 and n-1<(A089026(n-1))^5 then (A089026(n-1))^4 else 1 (1<=k<=n) And so on, this formula needs to be expanded if one wants to make a bigger table. A089026(n-1) means that the index to that sequence is shifted in this formula so that the first term in A089026 is used in the second column of the table.

A358452 The inverse Euler transform of p(n) = n if n is prime, otherwise 1.

Original entry on oeis.org

1, 1, 1, 1, -3, 3, -3, 5, -8, 5, -11, 36, -45, 41, -72, 142, -223, 311, -493, 851, -1243, 1823, -3204, 5336, -7906, 12083, -20134, 33133, -51685, 81568, -133556, 215363, -340155, 547916, -895895, 1442323, -2300704, 3718260, -6056908, 9787064, -15755664, 25541623
Offset: 0

Views

Author

Peter Luschny, Nov 21 2022

Keywords

Comments

Conjecture: signum(a(n)) + (-1)^n = 0 for n >= 3.

Crossrefs

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(isprime(n), n, 1)):
    seq(a(n), n = 0..41);
    # Using EULERi the sequence is returned without a(0) and has offset 1.
    f := n -> ifelse(isprime(n), n, 1): EULERi([seq(f(n), n = 1..41)]);
Previous Showing 21-25 of 25 results.