cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 85 results. Next

A129605 Signature-permutation of a Catalan automorphism, row 3613 of A089840.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 14, 16, 19, 10, 15, 12, 17, 18, 13, 20, 21, 22, 23, 24, 28, 30, 33, 37, 39, 42, 44, 47, 51, 53, 56, 60, 25, 29, 38, 43, 52, 26, 40, 31, 45, 46, 32, 48, 49, 50, 27, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 67, 68, 69, 79, 80
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

This involution effects the following transformation on the binary trees (labels A,B,C,D refer to arbitrary subtrees located on those nodes and () stands for a terminal node.)
.....C...D.........A...D
......\./...........\./
...B...X2........C...Y2......B..().......A..()
....\./...........\./.........\./.........\./
.A...X1....-->.B...Y1......A...X1..-->.B...Y1
..\./...........\./.........\./.........\./
...X0............Y0..........X0..........Y0
Note that automorphism *A072796 = SPINE(*A129605). See the definition given in A122203.

Crossrefs

Inverse: A129606.

A129606 Signature-permutation of a Catalan automorphism, row 3613 of A089840.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 24, 37, 42, 51, 25, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 67, 68, 69, 107
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

This involution effects the following transformation on the binary trees (labels A,B,C,D refer to arbitrary subtrees located on those nodes and () stands for a terminal node.)
.....C...D.........B...D
......\./...........\./
...B...X2........A...Y2......B..().......A..()
....\./...........\./.........\./.........\./
.A...X1....-->.C...Y1......A...X1..-->.B...Y1
..\./...........\./.........\./.........\./
...X0............Y0..........X0..........Y0
Note that automorphism *A072796 = ENIPS(*A129606). See the definition given in A122204.

Crossrefs

Inverse: A129605.

A129609 Signature-permutation of a Catalan automorphism, row 65167 of A089840.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 18, 14, 15, 16, 20, 19, 21, 9, 10, 22, 11, 12, 13, 45, 46, 48, 49, 50, 37, 38, 39, 40, 41, 42, 43, 44, 47, 54, 55, 51, 52, 53, 57, 56, 58, 23, 24, 59, 25, 26, 27, 61, 60, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

Automorphism *A074679 = ENIPS(*A129609). See the definition given in A122204.

Crossrefs

Inverse: A129610.

A129610 Signature-permutation of a Catalan automorphism, row 65352 of A089840.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 5, 4, 6, 17, 18, 20, 21, 22, 11, 12, 13, 9, 10, 15, 14, 16, 19, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 28, 29, 30, 31, 32, 33, 34, 35, 23, 24, 36, 25, 26, 27, 39, 40, 41, 37, 38, 43, 42, 44, 47, 52, 51, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

Automorphism *A074680 = SPINE(*A129610). See the definition given in A122203.

Crossrefs

Inverse: A129609.

A153834 Index sequence to A089840: position of A089840(n) when applied to the right hand side subtree.

Original entry on oeis.org

0, 3, 23, 27, 29, 33, 35, 46, 50, 52, 56, 58, 3655, 3659, 3667, 3677, 3681, 3747, 3751, 3759, 3763, 3771, 277, 281, 283, 287, 289, 299, 301, 305, 307, 311, 313, 323, 325, 329, 331, 335, 337, 347, 349, 353, 355, 359, 361, 396, 400, 402, 406, 408, 418, 420
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

The comments at A123694 concerning counts of fixed points apply also here.

Examples

			When A089840(1) = A069770 (swap binary tree sides) is applied to the right subtree of a binary tree, we get A089850 = A089840(3), thus a(1)=3. When A089840(12) = A074679 is applied to the right subtree of a binary tree, we get A154121 = A089840(3655), thus a(12)=3655.
		

Crossrefs

a(n) < A123694(n) for all n > 0. Used to construct A153832 and A153833.

A089842 Order of each element (row) in A089840, 0 if not finite.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003

Keywords

Comments

If a(n) is nonzero, then the n-th non-recursive Catalan Automorphism in A089840 does not have orbits (cycles) larger than that and the corresponding LCM-sequence will set to a constant sequence a(n),a(n),a(n),a(n),... E.g. A089840[4] = A089851 is obtained by rotating three subtrees cyclically and its LCM-sequence begins as 1,1,1,3,3,3,3,3,3,3,3,... (a(4)=3). Similarly, A089840[15] = A089859, whose LCM-sequence begins as 1,1,2,4,4,4,4,4,4,4,4,.... (a(15)=4). In contrast, the Max. cycle and LCM-sequence (A089410) of A089840[12] (= A074679) exhibits genuine growth, thus a(12)=0.

Crossrefs

Note that the terms 1-23 of A060131: 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4 repeat here at positions [22..44], [45..67], [68..90], [91..113], [114..136].

A131304 2*A089840 - A000012.

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 7, 3, 3, 1, 9, 13, 5, 3, 1, 11, 15, 7, 5, 3, 1, 13, 11, 11, 9, 5, 3, 1, 15, 7, 9, 7, 9, 5, 3, 1, 17, 9, 13, 11, 11, 11, 5, 3, 1, 19, 33, 15, 137, 9, 11, 5, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 27 2007

Keywords

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  5,  1;
   7,  3,  3,  1;
   9, 13,  5,  3,  1;
  11, 15,  7,  5,  3,  1;
  13, 11, 11,  9,  5,  3,  1;
  ...
		

Crossrefs

Formula

2*A089840(deleting the right border of zeros) - A000012.

A073200 Number of simple Catalan bijections of type B.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 2, 2, 1, 0, 7, 3, 3, 1, 0, 8, 4, 2, 3, 1, 0, 6, 6, 8, 2, 3, 1, 0, 4, 5, 7, 7, 2, 3, 1, 0, 5, 7, 6, 6, 8, 2, 3, 1, 0, 17, 8, 5, 8, 7, 7, 2, 2, 1, 0, 18, 9, 4, 4, 6, 8, 7, 3, 3, 1, 0, 20, 10, 22, 5, 5, 5, 8, 4, 2, 2, 1, 0, 21, 14, 21, 17, 4, 4, 6, 5, 8, 3, 3, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row is a permutation of nonnegative integers induced by a Catalan bijection (constructed as explained below) acting on the parenthesizations/plane binary trees as encoded and ordered by A014486/A063171.
The construction process is akin to the constructive mapping of primitive recursive functions to N: we have two basic primitives, A069770 (row 0) and A072796 (row 1), of which the former swaps the left and the right subtree of a binary tree and the latter exchanges the positions of the two leftmost subtrees of plane general trees, unless the tree's degree is less than 2, in which case it just fixes it. From then on, the even rows are constructed recursively from any other Catalan bijection in this table, using one of the five allowed recursion types:
0 - Apply the given Catalan bijection and then recurse down to both subtrees of the new binary tree obtained. (last decimal digit of row number = 2)
1 - First recurse down to both subtrees of the old binary tree and only after that apply the given Catalan bijection. (last digit = 4)
2 - Apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree obtained. (last digit = 6)
3 - First recurse down to the right subtree of old binary tree and only after that apply the given Catalan bijection. (last digit = 8)
4 - First recurse down to the left subtree of old binary tree, after that apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree. (last digit = 0)
The odd rows > 2 are compositions of the rows 0, 1, 2, 4, 6, 8, ... (i.e. either one of the primitives A069770 or A072796, or one of the recursive compositions) at the left hand side and any Catalan bijection from the same array at the right hand side. See the scheme-functions index-for-recursive-sgtb and index-for-composed-sgtb how to compute the positions of the recursive and ordinary compositions in this table.

Crossrefs

Four other tables giving the corresponding cycle-counts: A073201, counts of the fixed elements: A073202, the lengths of the largest cycles: A073203, the LCM's of all the cycles: A073204. The ordinary compositions are encoded using the N X N -> N bijection A054238 (which in turn uses the bit-interleaving function A000695).
The first 21 rows of this table:.
Row 0: A069770. Row 1: A072796. Row 2: A057163. Row 3: A073269, Row 4: A057163 (duplicate), Row 5: A073270, Row 6: A069767, Row 7: A001477 (identity perm.), Row 8: A069768, Row 9: A073280.
Row 10: A069770 (dupl.), Row 11: A072796 (dupl.), Row 12: A057511, Row 13: A073282, Row 14: A057512, Row 15: A073281, Row 16: A057509, Row 17: A073280 (dupl.), Row 18: A057510, Row 19: A073283, Row 20: A073284.
Other Catalan bijection-induced EIS-permutations which occur in this table. Only the first known occurrence is given. Involutions are marked with *, others paired with their inverse:.
Row 164: A057164*, Row 168: A057508*, Row 179: A072797*.
Row 41: A073286 - Row 69: A073287. Row 105: A073290 - Row 197: A073291. Row 416: A073288 - Row 696: A073289.
Row 261: A057501 - Row 521: A057502. Row 2618: A057503 - Row 5216: A057504. Row 2614: A057505 - Row 5212: A057506.
Row 10435: A073292 - Row ...: A073293. Row 17517: A057161 - Row ...: A057162.
For a more practical enumeration system of (some) Catalan automorphisms see table A089840 and its various "recursive derivations".

A072796 Self-inverse permutation of natural numbers induced by the Catalan bijection swapping the two leftmost subtrees in the general tree context of the parenthesizations encoded by A014486. See illustrations in the comments.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 14, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 24, 25, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 28, 29, 39, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 12 2002

Keywords

Comments

This bijection effects the following transformation on the unlabeled rooted plane general trees (letters A, B, C, etc. refer to arbitrary subtrees located on those vertices):
A A A B B A A B C B A C
| --> | \ / --> \ / \ | / --> \ | /
| | \./ \./ \|/ \|/ etc.
I.e., it keeps "planted" (root degree = 1) trees intact, and swaps the two leftmost toplevel subtrees of the general trees that have a root degree > 1.
On the level of underlying binary trees that general trees map to (see, e.g., 1967 paper by N. G. De Bruijn and B. J. M. Morselt, or consider lists vs. dotted pairs in Lisp programming language), this bijection effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
B C A C
\ / \ /
A x --> B x A () A ()
\ / \ / \ / --> \ /
x x x x
(a . (b . c)) -> (b . (a . c)) (a . ()) ---> (a . ())
Note that the first clause corresponds to what is called "generator pi_0" in Thompson's group V. (See also A074679, A089851 and A154121 for other related generators.)
Look at the example section to see how this will produce the given sequence of integers.
Applying this permutation recursively down the right hand side branch of the binary trees (or equivalently, along the topmost level of the general trees) produces permutations A057509 and A057510 (that occur at the same index 2 in tables A122203 and A122204) that effect "shallow rotation" on general trees and parenthesizations. Applying it recursively down the both branches of binary trees (as in pre- or postorder traversal) produces A057511 and A057512 (that occur at the same index 2 in tables A122201 and A122201) that effect "deep rotation" on general trees and parenthesizations.
For this permutation, A127301(a(n)) = A127301(n) for all n, which in turn implies A129593(a(n)) = A129593(n) for all n, likewise for all such recursively generated bijections as A057509 - A057512. Compare also to A072797.

Examples

			To obtain the signature permutation, we apply these transformations to the binary trees as encoded and ordered by A014486 and for each n, a(n) will be the position of the tree to which the n-th tree is transformed to, as follows:
.
                   one tree of one internal
  empty tree         (non-leaf) node
      x                      \/
n=    0                      1
a(n)= 0                      1               (both are always fixed)
.
the next 7 trees, with 2-3 internal nodes, in range [A014137(1), A014137(2+1)-1] = [2,8] are:
.
                          \/     \/                 \/     \/
       \/     \/         \/       \/     \/ \/     \/       \/
      \/       \/       \/       \/       \_/       \/       \/
n=     2        3        4        5        6        7        8
.
and the new shapes after swapping the two subtrees in positions marked "A" and "B" in the diagram given in the comments are:
.
                          \/               \/       \/     \/
       \/     \/         \/     \/ \/       \/     \/       \/
      \/       \/       \/       \_/       \/       \/       \/
a(n)=  2        3        4        6        5        7        5
thus we obtain the first nine terms of this sequence: 0, 1, 2, 3, 4, 6, 5, 7, 8.
		

Crossrefs

Row 2 of A089840. Row 3613 of A122203 and row 3617 of A122204.
Fixed point counts and cycle counts are given in A073190 and A073191.

Extensions

Comment section edited and Examples added by Antti Karttunen, Jan 26 2024

A074679 Signature permutation of a Catalan automorphism: Rotate binary tree left if possible, otherwise swap its sides.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 9, 10, 22, 11, 12, 13, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 23, 24, 59, 25, 26, 27, 60, 61, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 107, 108, 109, 110, 111
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
...B...C.......A...B
....\./.........\./
.A...x....-->....x...C.................A..().........()..A..
..\./.............\./...................\./....-->....\./...
...x...............x.....................x.............x....
(a . (b . c)) -> ((a . b) . c) ____ (a . ()) --> (() . a)
That is, we rotate the binary tree left, in case it is possible and otherwise (if the right hand side of a tree is a terminal node) swap the left and right subtree (so that the terminal node ends to the left hand side), i.e., apply the automorphism *A069770. Look at the example in A069770 to see how this will produce the given sequence of integers.
This is the first multiclause nonrecursive automorphism in table A089840 and the first one whose order is not finite, i.e., the maximum size of cycles in this permutation is not bounded (see A089842). The cycle counts in range [A014137(n-1)..A014138(n)] of this permutation is given by A001683(n+1), which is otherwise the same sequence as for Catalan automorphisms *A057161/*A057162, but shifted once right. For an explanation, please see the notes in OEIS Wiki.

Crossrefs

This automorphism has several variants, where the first clause is same (rotate binary tree to the left, if possible), but something else is done (than just swapping sides), in case the right hand side is empty: A082335, A082349, A123499, A123695. The following automorphisms can be derived recursively from this one: A057502, A074681, A074683, A074685, A074687, A074690, A089865, A120706, A122321, A122332. See also somewhat similar ones: A069773, A071660, A071656, A071658, A072091, A072095, A072093.
Inverse: A074680.
Row 12 of A089840.
Occurs also in A073200 as row 557243 because a(n) = A073283(A073280(A072796(n))). a(n) = A083927(A123498(A057123(n))).
Number of cycles: LEFT(A001683). Number of fixed points: LEFT(A019590). Max. cycle size & LCM of all cycle sizes: A089410 (in range [A014137(n-1)..A014138(n)] of this permutation).

Extensions

Description clarified Oct 10 2006
Previous Showing 41-50 of 85 results. Next