cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A092077 Generalized Stirling2 array (8,2).

Original entry on oeis.org

1, 56, 16, 1, 10192, 4928, 776, 48, 1, 3872960, 2477440, 575680, 63360, 3536, 96, 1, 2517424000, 1940556800, 572868800, 86163840, 7326880, 364800, 10480, 160, 1, 2497284608000, 2210343116800, 773352966400, 143430604800, 15836206400, 1099612800, 49056960, 1398400, 24520, 240, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

The generalized (k, 2)-Stirling2 arrays are, for k=2, ..., 7: A078739, A078740, A090438, A091534, A091746 and A091747.
Cf. A091546, A091552 (first, resp. second column). A091757 (row sums). A091758 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := ((-1)^k/k!) Sum[(-1)^p Binomial[k, p] Product[FactorialPower[ p + 6(j-1), 2], {j, 1, n}], {p, 2, k}];
    Table[a[n, k], {n, 1, 6}, {k, 2, 2n}] // Flatten (* Jean-François Alcover, Feb 28 2020 *)

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+6*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=8, s=2.
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(6*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A090440 Generalized Stirling2 array (4,3).

Original entry on oeis.org

1, 24, 36, 12, 1, 1440, 5760, 6120, 2520, 456, 36, 1, 172800, 1339200, 2808000, 2420640, 1025280, 232920, 29400, 2040, 72, 1, 36288000, 471744000, 1643846400, 2381702400, 1745755200, 721224000, 178941600, 27624960, 2689920, 163800, 6000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Comments

The row lengths for this array are [1,4,7,10,13,16,...] = A016777(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A090438 (4, 2)-Stirling2.
Cf. A070531 (row sums), A091028 (alternating row sums).

Programs

Formula

Recursion: a(n, k)=sum(binomial(3, p)*fallfac(n-1-p+k, 3-p)*a(n-1, k-p), p=0..3), n>=2, 3<=k<=3*n, a(1, 3)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+j-1, 3), j=1..n), p=3..k), n>=1, 3<=k<=3*n, else 0. From eq. (12) of the Blasiak et al. reference with r=4, s=3.

A072678 Generalized Bell numbers B_{4,2}.

Original entry on oeis.org

1, 21, 1045, 93289, 12975561, 2581284541, 693347907421, 241253367679185, 105394372192969489, 56410454014314490981, 36271084122927079387941, 27567930377271475039277881, 24435533594428382909107147225
Offset: 1

Views

Author

Karol A. Penson, Jul 01 2002

Keywords

Crossrefs

Cf. A090439 (alternating row sums of A090438).

Programs

  • Maple
    f:= n -> simplify((2*n)!*hypergeom([2*n+1], [3], 1)/(2*exp(1))):
    map(f, [$1..30]); # Robert Israel, May 23 2016
  • Mathematica
    a[n_] := n*(2n-1)!*Hypergeometric1F1[2-2n, 3, -1]; Array[a, 30] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) = (2*n)!*hypergeom([2*n+1], [3], 1)/(2*exp(1)), n=1, 2, ... Special values of the confluent hypergeometric function 1F1.
a(n) = sum(A090438(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+(j-1)*(4-2), 2), j=1..n), k=1..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
8*n*(2*n-1)*(2*n+1)*(n+1)^2*(n+3)*(n+2)*a(n)+(2*(n+1))*(8*n^3+32*n^2+42*n+13)*a(n+1)*(n+3)*(n+2)-(8*n^2+38*n+51)*(n+3)*(n+2)*a(n+2)+(n+3)*(n+2)*a(n+3) = 0. - Robert Israel, May 23 2016
a(n) = A052852(2*n-1). - Mark van Hoeij, Sep 05 2022

Extensions

Edited by Wolfdieter Lang, Dec 23 2003
Previous Showing 11-13 of 13 results.