cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A242977 Decimal expansion of Sum_{k>1} 1/(k*(k-1)*zeta(k)), a constant related to Niven's constant.

Original entry on oeis.org

7, 6, 6, 9, 4, 4, 4, 9, 0, 5, 2, 1, 0, 8, 8, 2, 4, 1, 6, 5, 2, 4, 1, 7, 9, 2, 3, 0, 0, 3, 1, 7, 6, 9, 3, 0, 9, 7, 4, 7, 5, 7, 8, 8, 9, 9, 3, 1, 9, 0, 5, 1, 6, 9, 6, 5, 4, 1, 2, 2, 0, 8, 1, 6, 0, 7, 8, 9, 6, 8, 4, 2, 3, 7, 5, 6, 7, 9, 5, 7, 7, 5, 7, 8, 9, 3, 7, 4, 6, 2, 9, 8, 4, 0, 9, 9, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, May 28 2014

Keywords

Comments

The asymptotic mean of the reciprocals of the maximal exponent in prime factorization of the positive integers. - Amiram Eldar, Dec 15 2022

Examples

			0.766944490521088241652417923...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.

Crossrefs

Programs

  • Mathematica
    digits = 98; m0 = 100; dm = 100; Clear[f]; f[m_] := f[m] = NSum[1/(k*(k - 1)*Zeta[k]), {k, 2, m}, WorkingPrecision -> digits + 10, NSumTerms -> m] + 1/m; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], Print["m = ", m ]; m = m + dm]; RealDigits[f[m], 10, digits] // First
  • PARI
    sumpos(k = 2, 1/(k*(k-1)*zeta(k))) \\ Amiram Eldar, Dec 15 2022

Formula

Equals lim_{n->oo} (1/n) * Sum_{k=2..n} 1/A051903(k). - Amiram Eldar, Oct 16 2020
Equals 1 + Sum_{k>=2} (1/zeta(k)-1)/(k*(k-1)). - Amiram Eldar, Dec 15 2022

A360729 a(n) is the number of prime factors of the n-th powerful number (counted with repetition).

Original entry on oeis.org

0, 2, 3, 2, 4, 2, 3, 5, 4, 2, 6, 5, 4, 4, 5, 2, 3, 7, 6, 2, 4, 5, 6, 4, 5, 8, 7, 2, 6, 3, 2, 5, 6, 7, 4, 4, 5, 9, 2, 8, 4, 7, 5, 4, 6, 6, 7, 2, 8, 6, 2, 5, 7, 6, 10, 4, 5, 9, 4, 4, 8, 5, 3, 5, 2, 5, 4, 4, 7, 8, 2, 9, 6, 7, 2, 6, 8, 7, 6, 11, 4, 7, 3, 2, 10, 5
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399.

Programs

  • Mathematica
    PrimeOmega[Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(bigomega, select(ispowerful, [1..3000]))

Formula

a(n) = A001222(A001694(n)).
Sum_{A001694(k) < x} a(k) = (2*zeta(3/2)/zeta(3))*sqrt(x)*log(log(x)) + (2*(B_2 - log(2)) + Sum_{p prime} (3/((p^(3/2)+1))))*(zeta(3/2)/zeta(3))*sqrt(x) + O(sqrt(x)/sqrt(log(x))), where B_2 = A083342 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]

A371185 Indices of the cubefull numbers in the sequence of powerful numbers.

Original entry on oeis.org

1, 3, 5, 7, 8, 11, 13, 17, 18, 23, 25, 26, 30, 34, 38, 41, 42, 45, 49, 54, 55, 61, 63, 72, 77, 78, 80, 82, 83, 87, 89, 93, 99, 105, 106, 113, 115, 116, 127, 128, 130, 137, 140, 148, 151, 153, 161, 164, 166, 179, 185, 186, 188, 192, 196, 201, 206, 221, 227, 234
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2024

Keywords

Examples

			The first 5 powerful numbers are 1, 4, 8, 9, and 16. The 1st, 3rd, and 5th, 1, 8, and 16, are also cubefull numbers. Therefore, the first 3 terms of this sequence are 1, 3, and 5.
		

Crossrefs

Similar sequences: A361936, A371186.

Programs

  • Mathematica
    powQ[n_, emin_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= emin &]; Position[Select[Range[20000], powQ[#, 2] &], _?(powQ[#1, 3] &), Heads -> False] // Flatten
  • PARI
    ispow(n, emin) = n == 1 || vecmin(factor(n)[, 2]) >= emin;
    lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(ispow(k, 2), c++; if(ispow(k, 3), print1(c, ", "))));}
    
  • Python
    from math import isqrt, gcd
    from sympy import mobius, integer_nthroot, factorint
    def A371185(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        c, l, m = 0, 0, bisection(f,n,n)
        j = isqrt(m)
        while j>1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        c += squarefreepi(integer_nthroot(m,3)[0])-l
        return c # Chai Wah Wu, Sep 12 2024

Formula

A001694(a(n)) = A036966(n).
a(n) ~ c * n^(3/2), where c = A090699 / A362974^(3/2) = 0.216089803749...

A378485 Decimal expansion of Product_{p prime} (1 + 1/p^(5/4) + 1/p^(3/2) + 1/p^(7/4)).

Original entry on oeis.org

9, 6, 6, 9, 4, 7, 5, 4, 8, 4, 3, 8, 2, 3, 6, 8, 1, 0, 6, 5, 0, 0, 6, 6, 6, 9, 4, 3, 2, 0, 0, 8, 1, 7, 9, 3, 8, 0, 9, 2, 7, 2, 4, 8, 4, 4, 4, 7, 6, 3, 8, 8, 8, 7, 0, 7, 8, 4, 6, 2, 6, 5, 7, 1, 3, 9, 3, 3, 9, 3, 8, 6, 8, 1, 2, 5, 1, 9, 3, 5, 5, 6, 1, 1, 1, 9, 6, 3, 1, 4, 2, 8, 4, 0, 3, 0, 3, 3, 4, 1
Offset: 1

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			9.669475484382368106500666943200817938092724844476...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + 1/p^5 + 1/p^6 + 1/p^7, 1/4)

A378486 Decimal expansion of Product_{p prime} (1 + 1/p^(6/5) + 1/p^(7/5) + 1/p^(8/5) + 1/p^(9/5)).

Original entry on oeis.org

1, 9, 4, 4, 5, 5, 7, 6, 0, 8, 3, 9, 0, 0, 5, 7, 1, 1, 3, 9, 0, 8, 0, 0, 8, 9, 3, 2, 8, 9, 9, 1, 3, 5, 4, 6, 4, 7, 1, 1, 9, 5, 0, 5, 0, 7, 5, 4, 8, 5, 7, 0, 8, 0, 2, 7, 3, 0, 8, 9, 8, 6, 3, 0, 3, 5, 8, 9, 5, 9, 6, 1, 5, 4, 2, 5, 0, 2, 5, 5, 8, 8, 6, 7, 0, 4, 9, 7, 6, 3, 2, 5, 6, 6, 2, 9, 7, 7, 3, 5
Offset: 2

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			19.445576083900571139080089328991354647119505075485...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + 1/p^6 + 1/p^7 + 1/p^8 + 1/p^9, 1/5)

A378487 Decimal expansion of Product_{p prime} (1 + 1/p^(6/5) + 1/p^(7/5) - 1/p^2 - 1/p^(11/5) - 1/p^(12/5)) (negated).

Original entry on oeis.org

1, 6, 9, 7, 8, 7, 8, 1, 4, 8, 3, 4, 3, 5, 2, 4, 3, 9, 9, 2, 7, 9, 9, 7, 0, 6, 2, 6, 1, 4, 0, 3, 1, 3, 3, 2, 3, 4, 1, 2, 5, 8, 7, 3, 3, 4, 2, 9, 5, 9, 5, 4, 0, 4, 6, 7, 5, 1, 4, 1, 2, 5, 6, 6, 4, 9, 0, 8, 1, 4, 6, 0, 9, 6, 5, 7, 0, 6, 1, 6, 9, 0, 5, 5, 4, 3, 0, 4, 7, 2, 7, 4, 9, 3, 8, 6, 3, 1, 1, 8
Offset: 2

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			-16.978781483435243992799706261403133234125873342959...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    zeta(4/5)*prodeulerrat(1 + 1/p^6 + 1/p^7 - 1/p^10 - 1/p^11 - 1/p^12, 1/5)

A235872 Number of solutions to the equation x^2=0 in the ring of Gaussian integers modulo n.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 9, 2, 1, 4, 1, 2, 1, 16, 1, 18, 1, 4, 1, 2, 1, 8, 25, 2, 9, 4, 1, 2, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 16, 49, 50, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 72, 1, 2, 25, 4, 1, 2, 1, 16, 81, 2
Offset: 1

Views

Author

Keywords

Comments

Numbers of solutions to x^2 == y^2 (mod n), 2*x*y == 0 (mod n). - Andrew Howroyd, Aug 06 2018

Crossrefs

Programs

  • Mathematica
    invoG[n_] := invoG[n] = Sum[If[Mod[(x + I y)^2, n] == 0, 1, 0], {x, 0, n - 1}, {y, 0, n - 1}]; Table[invoG[n], {n, 1, 104}]
    f[p_, e_] := p^(2*Floor[e/2]); f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n)={sum(i=0, n-1, sum(j=0, n-1, (i^2 - j^2)%n == 0 && 2*i*j%n == 0))} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); p^if(p==2, e, e - e%2))} \\ Andrew Howroyd, Aug 06 2018

Formula

Multiplicative with a(2^e) = 2^e, a(p^e) = p^(2*floor(e/2)). - Andrew Howroyd, Aug 06 2018
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (2/21)*(3+sqrt(2))*zeta(3/2)/zeta(3) = 0.91363892007.... - Amiram Eldar, Nov 13 2022

A382790 a(n) is the (2^n)-th powerful number.

Original entry on oeis.org

1, 4, 9, 32, 121, 392, 1352, 5000, 18432, 69192, 265837, 1024144, 3968064, 15523600, 60972500, 240413400, 950612224, 3767130288, 14959246864, 59495990724, 236902199076, 944193944097, 3765996039168, 15029799230264, 60010866324576, 239700225078125, 957712290743329
Offset: 0

Views

Author

Amiram Eldar, Apr 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{p = Union@ Flatten@ Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]}, p[[2^Range[0, Floor[Log2[Length[p]]]]]]]; seq[10^12]

Formula

a(n) = A001694(2^n).
a(n) ~ c * 4^n, where c = (zeta(3)/zeta(3/2))^2 = 1/A090699^2.

A242972 Decimal expansion of a constant related to Niven's constant.

Original entry on oeis.org

8, 9, 2, 8, 9, 4, 5, 7, 1, 4, 5, 1, 2, 6, 6, 0, 9, 0, 4, 5, 7, 0, 0, 9, 4, 3, 0, 0, 2, 2, 4, 2, 7, 0, 9, 3, 3, 6, 0, 5, 0, 4, 0, 8, 5, 9, 4, 4, 5, 6, 8, 4, 3, 2, 6, 4, 7, 4, 9, 5, 6, 7, 9, 0, 7, 4, 3, 7, 2, 7, 3, 4, 3, 8, 7, 2, 7, 6, 5, 6, 4, 9, 4, 9, 0, 6, 6, 9, 6, 8, 8, 7, 3, 6, 9, 4, 1, 7, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, May 28 2014

Keywords

Examples

			0.89289457145126609045700943002242709336...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.

Crossrefs

Programs

  • Mathematica
    digits = 100; k0 = 100; dk = 50; $MaxExtraPrecision = 12*digits; z[n_?NumericQ] := Zeta[Prime[n // Floor]]; Clear[s]; s[k_] := s[k] = NSum[z[n] - 1, {n, 1, k}, WorkingPrecision -> digits + 10, NSumTerms -> 10*digits]*(1 + NSum[Zeta[n] - 1, {n, k + 1, Infinity}, WorkingPrecision -> digits + 10]); s[k0] ; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

Formula

Equals Sum_(p prime) (zeta(p)-1).
Equals Sum_{k>=2} Sum_{p prime} 1/k^p. - Amiram Eldar, Aug 21 2020
Previous Showing 21-29 of 29 results.