A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0
Examples
a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..985
- Index entries for linear recurrences with constant coefficients, signature (33,-393,1991,-3930,3300,-1000).
Programs
-
Mathematica
Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
-
PARI
a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
-
Sage
[3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022
Formula
a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008
Extensions
More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020
Comments