cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A092221 Numbers k such that numerator of Bernoulli(2*k) is divisible by 59, the second irregular prime.

Original entry on oeis.org

22, 51, 59, 80, 109, 118, 138, 167, 177, 196, 225, 236, 254, 283, 295, 312, 341, 354, 370, 399, 413, 428, 457, 472, 486, 515, 531, 544, 573, 590, 602, 631, 649, 660, 689, 708, 718, 747, 767, 776, 805, 826, 834, 863, 885, 892, 921, 944, 950, 979, 1003, 1008
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Comments

Satisfies a(n) = 2*a(n-3) - a(n-6) for n < 67. - Chai Wah Wu, May 28 2016

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1036], Mod[ Numerator[ BernoulliB[2# ]], 59] == 0 &]
  • PARI
    for(n=0, 10^3, if( numerator(bernfrac(2*n))%59==0, print1(n, ", ") ) ); \\ Joerg Arndt, May 29 2016
  • Python
    from sympy import bernoulli
    A092221_list = [n for n in range(10**3) if not bernoulli(2*n).p % 59] # Chai Wah Wu, May 28 2016
    

A092229 Numbers k such that numerator of Bernoulli(2*k) is divisible by 257, the tenth irregular prime.

Original entry on oeis.org

82, 210, 257, 338, 466, 514, 594, 722, 771, 850, 978, 1028, 1106, 1234, 1285, 1362, 1490, 1542, 1618, 1746, 1799, 1874, 2002, 2056, 2130, 2258, 2313, 2386, 2514, 2570, 2642, 2770, 2827, 2898, 3026, 3084, 3154, 3282, 3341, 3410, 3538, 3598, 3666, 3794
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 3854], Mod[ Numerator[ BernoulliB[2# ]], 257] == 0 &]

A092222 Numbers k such that numerator of Bernoulli(2*k) is divisible by 67, the third irregular prime.

Original entry on oeis.org

29, 62, 67, 95, 128, 134, 161, 194, 201, 227, 260, 268, 293, 326, 335, 359, 392, 402, 425, 458, 469, 491, 524, 536, 557, 590, 603, 623, 656, 670, 689, 722, 737, 755, 788, 804, 821, 854, 871, 887, 920, 938, 953, 986, 1005, 1019, 1052, 1072, 1085, 1118, 1139
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Comments

n is a member iff either 2n == 58 (mod 66) or n = 67k. - T. D. Noe, Mar 22 2004

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1150], Mod[ Numerator[ BernoulliB[2# ]], 67] == 0 &]

A092223 Numbers k such that numerator of Bernoulli(2*k) is divisible by 101, the fourth irregular prime.

Original entry on oeis.org

34, 84, 101, 134, 184, 202, 234, 284, 303, 334, 384, 404, 434, 484, 505, 534, 584, 606, 634, 684, 707, 734, 784, 808, 834, 884, 909, 934, 984, 1010, 1034, 1084, 1111, 1134, 1184, 1212, 1234, 1284, 1313, 1334, 1384, 1414, 1434, 1484, 1515, 1534, 1584, 1616
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1633], Mod[ Numerator[ BernoulliB[2# ]], 101] == 0 &]

A092224 Numbers k such that the numerator of Bernoulli(2*k) is divisible by 103, the fifth irregular prime.

Original entry on oeis.org

12, 63, 103, 114, 165, 206, 216, 267, 309, 318, 369, 412, 420, 471, 515, 522, 573, 618, 624, 675, 721, 726, 777, 824, 828, 879, 927, 930, 981, 1030, 1032, 1083, 1133, 1134, 1185, 1236, 1287, 1338, 1339, 1389, 1440, 1442, 1491, 1542, 1545, 1593, 1644, 1648
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Comments

103 = A094095(1) is the first irregular prime in A094095. This sequence is the union of 2 arithmetic progressions: (24 + 102*n)/2 and 103*n. Note that the numerator of BernoulliB(2*114) is divisible by the first nontrivial irregular squared prime 103^2, when A090943(1)/2 = a(n) = 114 = (24 + 102*2)/2. Also, the numerator of BernoulliB(2*1236) is divisible by 103^2 because a(n) = 1236 = (24 + 102*24)/2 = 103*24/2. - Alexander Adamchuk, Jul 31 2006

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1694], Mod[ Numerator[ BernoulliB[2# ]], 103] == 0 &]
    Select[Union[Table[2n*103,{n,1,100}],Table[24+102*n,{n,0,100}]], #<=10000&]/2 (* Alexander Adamchuk, Jul 31 2006 *)

A092225 Numbers k such that numerator of Bernoulli(2*k) is divisible by 131, the sixth irregular prime.

Original entry on oeis.org

11, 76, 131, 141, 206, 262, 271, 336, 393, 401, 466, 524, 531, 596, 655, 661, 726, 786, 791, 856, 917, 921, 986, 1048, 1051, 1116, 1179, 1181, 1246, 1310, 1311, 1376, 1441, 1506, 1571, 1572, 1636, 1701, 1703, 1766, 1831, 1834, 1896, 1961, 1965, 2026, 2091
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2095], Mod[ Numerator[ BernoulliB[2# ]], 131] == 0 &]

A092226 Numbers k such that numerator of Bernoulli(2*k) is divisible by 149, the seventh irregular prime.

Original entry on oeis.org

65, 139, 149, 213, 287, 298, 361, 435, 447, 509, 583, 596, 657, 731, 745, 805, 879, 894, 953, 1027, 1043, 1101, 1175, 1192, 1249, 1323, 1341, 1397, 1471, 1490, 1545, 1619, 1639, 1693, 1767, 1788, 1841, 1915, 1937, 1989, 2063, 2086, 2137, 2211, 2235, 2285
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2358], Mod[ Numerator[ BernoulliB[2# ]], 149] == 0 &]

A092227 Numbers k such that numerator of Bernoulli(2*k) is divisible by 157, the eighth irregular prime and first irregular prime of index 2.

Original entry on oeis.org

31, 55, 109, 133, 157, 187, 211, 265, 289, 314, 343, 367, 421, 445, 471, 499, 523, 577, 601, 628, 655, 679, 733, 757, 785, 811, 835, 889, 913, 942, 967, 991, 1045, 1069, 1099, 1123, 1147, 1201, 1225, 1256, 1279, 1303, 1357, 1381, 1413, 1435, 1459, 1513, 1537
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1569], Mod[ Numerator[ BernoulliB[2# ]], 157] == 0 &]

A092228 Numbers k such that numerator of Bernoulli(2*k) is divisible by 233, the ninth irregular prime.

Original entry on oeis.org

42, 158, 233, 274, 390, 466, 506, 622, 699, 738, 854, 932, 970, 1086, 1165, 1202, 1318, 1398, 1434, 1550, 1631, 1666, 1782, 1864, 1898, 2014, 2097, 2130, 2246, 2330, 2362, 2478, 2563, 2594, 2710, 2796, 2826, 2942, 3029, 3058, 3174, 3262, 3290, 3406, 3495
Offset: 1

Views

Author

Robert G. Wilson v, Feb 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 3521], Mod[ Numerator[ BernoulliB[2# ]], 233] == 0 &]

A251782 Least even integer k such that numerator(B_k) == 0 (mod 37^n).

Original entry on oeis.org

32, 284, 37580, 1072544, 55777784, 325656968, 42764158652, 2444284077476, 46872402575720, 4093248733492712, 167845040875289732, 4841789050865438960, 235423026877046134208, 7818983737604766777920, 95503904455394036720840, 6908622244227620311285724, 114945213060615779807957456
Offset: 1

Views

Author

Keywords

Comments

37 is the first irregular prime. The corresponding entry for the second irregular prime 59 is A299466, and for the third irregular prime 67 is A299467.
The p-adic digits of the unique simple zero of the p-adic zeta function zeta_{(p,l)} with (p,l)=(37,32) were used to compute the sequence (see the Mathematica program below). This corresponds with Table A.2 in Kellner (2007). The sequence is increasing, but some consecutive entries are identical, e.g., entries 18 / 19 and 80 / 81. This is caused only by those p-adic digits that are zero.

Examples

			a(3) = 37580 because the numerator of B_37580 is divisible by 37^3 and there is no even integer less than 37580 for which this is the case.
		

Crossrefs

Programs

  • Mathematica
    p = 37; l = 32; LD = {7, 28, 21, 30, 4, 17, 26, 13, 32, 35, 27, 36, 32, 10, 21, 9, 11, 0, 1, 13, 6, 8, 10, 11, 10, 11, 32, 13, 30, 10, 6, 8, 2, 12, 1, 8, 2, 5, 3, 10, 19, 8, 4, 7, 19, 27, 33, 29, 29, 11, 2, 23, 8, 34, 5, 8, 35, 35, 13, 31, 29, 6, 7, 22, 13, 29, 7, 15, 22, 20, 19, 29, 2, 14, 2, 2, 31, 11, 4, 0, 27, 8, 10, 23, 17, 35, 15, 32, 22, 14, 7, 18, 8, 3, 27, 35, 33, 31, 6}; CalcIndex[L_, p_, l_, n_] := l + (p - 1) Sum[L[[i + 1]] p^i , {i, 0, n - 2}]; Table[CalcIndex[LD, p, l, n], {n, 1, Length[LD] + 1}] // TableForm

Formula

Numerator(B_{a(n)}) == 0 (mod 37^n).

Extensions

Edited for consistency with A299466 and A299467 by Bernd C. Kellner and Jonathan Sondow, Feb 20 2018
Showing 1-10 of 17 results. Next