cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A228417 Count of the first 10^n primes which do not contain the digit 5.

Original entry on oeis.org

1, 9, 85, 708, 6635, 60640, 535534, 4737129, 43297195, 392641522, 3536880527, 31067514571, 282635824867
Offset: 0

Views

Author

Robert Price, Nov 09 2013

Keywords

Examples

			a(1) = 9 since there are 9 primes in the first 10 (through 29) that do not contain a 5.  Namely: 2, 3, 7, 11, 13, 17, 19, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 5] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)

Formula

a(n) <= 9^n. - Charles R Greathouse IV, May 21 2014

Extensions

a(12) from Lucas A. Brown, Mar 19 2024

A228418 Count of the first 10^n primes which do not contain the digit 6.

Original entry on oeis.org

1, 10, 90, 719, 6696, 60845, 554933, 4742037, 43331008, 392875212, 3573268469, 31207451849, 282765603085
Offset: 0

Views

Author

Robert Price, Nov 09 2013

Keywords

Examples

			a(1) = 10 since there are 10 primes in the first 10 (through 29) that do not contain a 6.  Namely: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 6] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)

Formula

a(n) <= 9^n. - Charles R Greathouse IV, May 21 2014

Extensions

a(12) from Lucas A. Brown, Mar 19 2024

A228419 Count of the first 10^n primes which do not contain the digit 7.

Original entry on oeis.org

1, 8, 67, 539, 5034, 45549, 416913, 3570781, 32517377, 294828478, 2681147149, 23720397369, 212156228217
Offset: 0

Views

Author

Robert Price, Nov 09 2013

Keywords

Examples

			a(1) = 8 since there are 8 primes in the first 10 (through 29) that do not contain a 7.  Namely: 2, 3, 5, 11, 13, 19, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 7] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)

Formula

a(n) <= 9^n. - Charles R Greathouse IV, May 21 2014

Extensions

a(12) from Lucas A. Brown, Mar 19 2024

A228420 Count of the first 10^n primes which do not contain the digit 8.

Original entry on oeis.org

1, 10, 92, 816, 6712, 60867, 555878, 5026796, 43410238, 395243878, 3576361255, 32461990759, 282971130960
Offset: 1

Views

Author

Robert Price, Nov 09 2013

Keywords

Examples

			a(1) = 10 since there are 10 primes in the first 10 (through 29) that do not contain a 8.  Namely: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 8] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)

Formula

a(n) <= 9^n. - Charles R Greathouse IV, May 21 2014

Extensions

a(12) from Lucas A. Brown, Mar 19 2024

A231787 Count of the first 10^n primes containing at least one 1's digit.

Original entry on oeis.org

4, 46, 468, 5325, 65575, 737451, 7948534, 83168848, 844383541, 8470537436, 85169381579
Offset: 1

Views

Author

Robert Price, Nov 13 2013

Keywords

Examples

			a(1)=4 because there are 4 primes not greater than 29 (the 10th prime) that contain a 1's digit.  Namely: 11, 13, 17, 19.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 1], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)
    Module[{nn=7,p},p=Table[If[DigitCount[p,10,1]>0,1,0],{p,Prime[ Range[ 10^nn]]}];Table[Total[Take[p,10^k]],{k,nn}]] (* The program generates the first 7 terms of the sequence; to generate more, increase the value of nn but the program may take a long time to run. *) (* Harvey P. Dale, Sep 27 2019 *)

Formula

a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014

A231788 Count of the first 10^n primes containing at least one 2's digit.

Original entry on oeis.org

3, 23, 303, 3503, 44448, 487900, 5289359, 57794031, 658775109, 7212208422, 77028673251
Offset: 1

Views

Author

Robert Price, Nov 13 2013

Keywords

Examples

			a(1)=3 because there are 3 primes not greater than 29 (the 10th prime) that contain a 2's digit.  Namely: 2, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 2], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)

Formula

a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014

A231789 Count of the first 10^n primes containing at least one 3's digit.

Original entry on oeis.org

3, 46, 466, 5091, 54595, 614992, 6460120, 67739219, 705998810, 7435919752, 76728753676
Offset: 1

Views

Author

Robert Price, Nov 13 2013

Keywords

Examples

			a(1)=3 because there are 3 primes not greater than 29 (the 10th prime) that contain a 3's digit.  Namely: 3, 13, 23.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 3], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)

Formula

a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014

A231793 Count of the first 10^n primes containing at least one 6's digit.

Original entry on oeis.org

0, 10, 281, 3304, 39155, 445067, 5257963, 56668992, 607124788, 6426731531, 68792548151
Offset: 1

Views

Author

Robert Price, Nov 13 2013

Keywords

Examples

			a(2)=10 because there are 10 primes not greater than 541 (the 100th prime) that contain a 6's digit.  Namely: 61, 67, 163, 167, 263, 269, 367, 461, 463, 467.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 6], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)

Formula

a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014

A231794 Count of the first 10^n primes containing at least one 7's digit.

Original entry on oeis.org

2, 33, 461, 4966, 54451, 583087, 6429219, 67482623, 705171522, 7318852851, 76279602631
Offset: 1

Views

Author

Robert Price, Nov 13 2013

Keywords

Examples

			a(2)=33 because there are 33 primes not greater than 541 (the 100th prime) that contain a 7's digit.  Namely: 7, 17, 37, 47, 67, 71, 73, 79, 97, 107, 127, 137, 157, 167, 173, 179, 197, 227, 257, 271, 277, 307, 317, 337, 347, 367, 373, 379, 397, 457, 467, 479, 487.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 7], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)

Formula

a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014

A231795 Count of the first 10^n primes containing at least one 8's digit.

Original entry on oeis.org

0, 8, 184, 3288, 39133, 444122, 4973204, 56589762, 604756122, 6423638745, 67538009241
Offset: 1

Views

Author

Robert Price, Nov 13 2013

Keywords

Examples

			a(2)=8 because there are 8 primes not greater than 541 (the 100th prime) that contain a 8's digit.  Namely: 83, 89, 181, 281, 283, 383, 389, 487.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 8], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)

Formula

a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014
Previous Showing 21-30 of 30 results.