A127245
Row sums of a signed Thue-Morse related triangle.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1
Offset: 0
-
a[n_] := Mod[Sum[Product[ThueMorse[i], {i, k+1, n}], {k, 0, n}], 2]; Array[a, 100, 0] (* Amiram Eldar, Aug 04 2023 *)
Original entry on oeis.org
2, 3, 4, 2, 4, 3, 2, 3, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 3, 2, 3, 4, 2, 4, 3, 2, 3, 4, 3, 2, 4, 2, 3, 4, 3, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3, 2, 3, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 3, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3
Offset: 1
A094177
Sequence from an aptitude test that I cannot work out!
Original entry on oeis.org
4, 3, 4, 9, 21, 51
Offset: 1
Dominique Butterworth (dominique_butterworth(AT)hotmail.com), May 06 2004
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
-1, 0, 1;
0, 0, 0, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, -1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
...
-
T1[n_, k_] := SeriesCoefficient[(1 + ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127243 *)
T2[n_, k_] := SeriesCoefficient[(1 - ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127248 *)
T[n_, k_] := Sum[T2[n, j]*T1[j, k], {j, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
A248416
Rectangular array by antidiagonals: for n >= 0, row n gives the positions in the Thue-Morse sequence A010059 at which the first 2^n terms occur.
Original entry on oeis.org
1, 4, 1, 6, 4, 1, 7, 7, 7, 1, 10, 11, 13, 13, 1, 11, 13, 21, 25, 25, 1, 13, 16, 25, 41, 49, 49, 1, 16, 19, 31, 49, 81, 97, 97, 1, 18, 21, 37, 61, 97, 161, 193, 193, 1, 19, 25, 41, 73, 121, 193, 321, 385, 385, 1, 21, 28, 49, 81, 145, 241, 385, 641, 769, 769, 1, 24, 31, 55, 97, 161, 289, 481, 769, 1281, 1537, 1537, 1
Offset: 1
Northwest corner, n>=0, k>=1:
1 4 6 7 10 11 13 16 18 19
1 4 7 11 13 16 19 21 25 28
1 7 13 21 25 31 37 41 49 55
1 13 25 41 49 61 73 81 97 109
1 25 49 81 97 121 145 161 193 217
1 49 97 161 193 241 289 321 385 433
1 97 193 321 385 481 577 641 769 865
The Thue-Morse sequence A010059 begins with 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, from which we see that the first 4 terms (=1,0,0,1) occur at positions 1, 7, 13, ..., as indicated for row n=2.
-
A010060 := proc(n)
local i;
add(i, i=convert(n, base, 2)) mod 2 ;
end proc:
A010059 := proc(n)
1-A010060(n) ;
end proc:
A248416Off0 := proc(n,k)
option remember ;
local strtN,binpat,src,thue ;
if k = 1 then
strtN := 0 ;
else
strtN := 1+procname(n,k-1) ;
end if;
binpat := [seq(A010059(i),i=0..n-1)] ;
for src from strtN do
thue := [seq(A010059(i),i=src..src+nops(binpat)-1)] ;
if binpat=thue then
return src ;
end if;
end do:
end proc:
A248416 := proc(n,k)
1+A248416Off0(2^n,k) ;
end proc:
for d from 1 to 11 do
for k from d to 1 by -1 do
printf("%d,",A248416(d-k,k)) ;
end do: # R. J. Mathar, Nov 06 2018
-
z = 3000; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 20]; Length[u]
t[p_, q_] := t[p, q] = Table[u[[k]], {k, p, q}];
r[n_] := Select[Range[z], t[#, # + 2^(n - 1)] == t[1, 1 + 2^(n - 1)] &]
TableForm[Table[r[n], {n, 0, 10}]]
Definitions and examples clarified. -
R. J. Mathar, Nov 06 2018
Comments