cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A097940 Sum of smallest parts (counted with multiplicity) of all compositions of n.

Original entry on oeis.org

1, 4, 8, 20, 37, 86, 173, 372, 788, 1680, 3550, 7554, 15994, 33820, 71374, 150376, 316151, 663474, 1389760, 2906116, 6066899, 12645608, 26318870, 54700044, 113536171, 235363832, 487342781, 1007969620, 2082597193, 4298660754, 8864505305, 18263797648, 37597869188
Offset: 1

Views

Author

Vladeta Jovovic, Sep 05 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[ CoefficientList[ Series[(1 - x)^2*Sum[k*x^k/(1 - x - x^k)^2, {k, 50}], {x, 0, 30}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)

Formula

G.f.: (1-x)^2 * Sum_{k>=1} k*x^k/(1-x-x^k)^2.
a(n) ~ n * 2^(n-3). - Vaclav Kotesovec, Sep 05 2014
a(n) = Sum_{k=1..n} A308630(n,k). - R. J. Mathar, Jun 12 2019

Extensions

More terms from Robert G. Wilson v, Sep 08 2004

A213359 Sum of all parts that are not the smallest part (counted with multiplicity) of all partitions of n.

Original entry on oeis.org

0, 0, 2, 5, 16, 27, 59, 96, 164, 260, 415, 606, 923, 1336, 1911, 2698, 3787, 5203, 7142, 9646, 12962, 17295, 22902, 30063, 39315, 51104, 66013, 84898, 108658, 138397, 175593, 221872, 279207, 350248, 437607, 545093, 676764, 837873, 1033961, 1272730, 1562137
Offset: 1

Views

Author

Omar E. Pol, Jan 08 2013

Keywords

Examples

			a(4) = 5 because the partitions of 4 are [1,1,1,1], [1,1,2], [1,3], [2,2], and [4], having sum of parts that are not the smallest 0, 2, 3, 0, and 0, respectively, and 0 + 2 + 3 + 0 + 0 = 5. - _Emeric Deutsch_, Feb 02 2016
		

Crossrefs

Programs

  • Maple
    g := add(x^i*add(j*x^j/(1-x^j), j = i+1 .. 80)/((1-x^i)*mul(1-x^j, j = i+1 .. 80)), i = 1 .. 80): gser := series(g, x = 0, 55): seq(coeff(gser, x, n), n = 1 .. 40); # Emeric Deutsch, Feb 02 2016
  • Mathematica
    max = 42; gser = Sum[x^i*Sum[j*x^j/(1-x^j), {j, i+1, max}]/((1-x^i)* Product[1-x^j, {j, i+1, max}]), {i, 1, max}]+O[x]^max; CoefficientList[ gser, x] // Rest (* Jean-François Alcover, Feb 21 2017, after Emeric Deutsch *)

Formula

a(n) = A066186(n) - A092309(n).
G.f.: Sum_{i>0}(x^i/(1-x^i))(Sum_{j>i}(j*x^j/(1-x^j))/Product_{j>i}(1-x^j)) (obtained by logarithmic differentiation of the bivariate g.f. given in A268189). - Emeric Deutsch, Feb 02 2016
Previous Showing 11-12 of 12 results.