cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A092575 Number of representations of n of the form x^2 + 3y^2 with (x,y)=1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    V:= Vector(N):
    for y from 1 to floor(sqrt(N/3-1)) do
      for x from 1 to floor(sqrt(N-3*y^2)) do
        if igcd(x,y) = 1 then V[x^2 + 3*y^2]:= V[x^2+3*y^2]+1
        fi
    od od:
    convert(V,list); # Robert Israel, Apr 03 2017
  • Mathematica
    r[n_] := Reduce[ x > 0 && y > 0 && GCD[x, y] == 1 && n == x^2 + 3 y^2, {x, y}, Integers]; a[n_] := Which[ r[n] === False, 0, r[n][[0]] === And, 1, True, Length[r[n]]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Oct 31 2012 *)

A155715 Least number expressible as a^2 + k b^2 with positive integers a,b, for each k=1,...,n.

Original entry on oeis.org

2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924, 1399696, 1399696, 1399696, 3027249, 3027249, 3027249, 4349601, 4349601, 18567396, 18567396, 18567396
Offset: 1

Views

Author

M. F. Hasler, Jan 27 2009

Keywords

Comments

Sequence A028372 considers primes with this property, but allowing for nonzero a,b (which obviously is irrelevant for n>2). Up to n=13, the terms of the present sequence are prime without imposing it explicitely and thus coincide with A028372 except for n=2.
a(n) > 10^9 for n >= 47. [From Donovan Johnson, Sep 29 2009]

Examples

			a(1) = 2 = 1^2 + 1^2 is the least number of the sequence A000404 (sum of positive squares). a(2) = 17 = 1^2 + 4^2 = 3^2 + 2*2^2 is the least number in sequence A000404 to be in sequence A154777 (a^2+2b^2)as well. a(3) = 73 = 3^2 + 8^2 = 1^2 + 2*6^2 = 5^2 + 3*4^2 is the least number in the intersection of sequences A000404, A154777 and A092572 (a^2+3b^2).
		

Crossrefs

Programs

  • PARI
    k=1; for( n=1,10^9, forstep( c=k,1,-1, for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & next(2));next(2)); print1(n",");k++;n--)

Extensions

a(23)-a(46) and b-file from Donovan Johnson, Sep 29 2009

A092574 Positive integers that can be represented in the form x^2 + 3y^2 with (x,y) = 1 and x and y positive.

Original entry on oeis.org

4, 7, 12, 13, 19, 21, 28, 31, 37, 39, 43, 49, 52, 57, 61, 67, 73, 76, 79, 84, 91, 93, 97, 103, 109, 111, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 172, 181, 183, 193, 196, 199, 201, 211, 217, 219, 223, 228, 229, 237, 241, 244, 247, 259, 268
Offset: 1

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Comments

Superset of primes of the form 6n+1 (A002476).
For all proper solutions with nonnegative x and y see A244819. - Wolfdieter Lang, Mar 02 2021

Crossrefs

A155708 Numbers expressible as a^2 + k*b^2 with nonzero integers a,b, for k=2, k=3 and k=5.

Original entry on oeis.org

36, 129, 144, 201, 241, 324, 409, 441, 489, 516, 576, 601, 769, 804, 849, 900, 921, 964, 1009, 1129, 1161, 1201, 1249, 1296, 1321, 1489, 1521, 1569, 1609, 1636, 1641, 1764, 1801, 1809, 1849, 1929, 1956, 2064, 2089, 2161, 2169, 2281, 2304, 2361, 2404, 2521
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S[2]:= {}: S[3]:= {}: S[5]:= {}:
    for a from 1 to floor(sqrt(N)) do
      for k in [2,3,5] do
        S[k]:= S[k] union {seq(a^2 + k*b^2, b = 1 .. floor(sqrt((N-a^2)/k)))}
      od
    od:
    R:= S[2] intersect S[3] intersect S[5]:
    sort(convert(R,list)); # Robert Israel, Jul 11 2018
  • PARI
    isA155708(n, /* optional 2nd arg allows us to get other sequences */c=[5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155708(n) & print1(n","))

A155714 Least number expressible as a^2 + p b^2 with positive integers a,b, for each prime p <= prime(n) = A000040(n).

Original entry on oeis.org

3, 12, 36, 144, 144, 4356, 4356, 4356, 7056, 17424, 176400, 2547216, 2547216, 6290064, 6780816, 6780816, 6780816, 6780816, 93315600, 93315600, 271986064, 271986064, 271986064, 271986064, 271986064, 308213136, 308213136, 308213136
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(n) > 10^9 for n >= 33. [From Donovan Johnson, Sep 29 2009]

Crossrefs

Programs

  • PARI
    A155714(k,n=1) = { local(p); until( !n++, p=prime(k); until( !p=precprime(p-1), for( b=1, sqrtint((n-1)\p), issquare(n-p*b^2) & next(2)); next(2)); break);n}
    t=1; for(k=1,30, print1(t=A155714(k,t),","))

Extensions

a(12)-a(32) and b-file from Donovan Johnson, Sep 29 2009

A301534 Number of ways to write the n-th prime congruent to 7 modulo 12 as x^2 + 3*y^2 + 15*2^z with x,y,z nonnegative integers.

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 2, 6, 6, 4, 7, 4, 9, 6, 6, 6, 7, 9, 5, 10, 3, 9, 7, 9, 8, 11, 9, 8, 10, 5, 8, 9, 4, 10, 7, 7, 7, 8, 7, 13, 8, 6, 6, 14, 7, 15, 3, 11, 8, 10, 8, 7, 7, 9, 6, 9, 7, 7, 10, 12, 6, 9, 4, 7, 10, 12, 12, 7, 13, 9, 12, 6, 7, 10, 5, 8, 7, 12, 12, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any prime p > 7 with p == 7 (mod 12) can be written as x^2 + 3*y^2 + 15*2^z with x,y,z nonnegative integers.
We have verified the conjecture for all primes p == 7 (mod 12) with 7 < p < 8*10^9.

Examples

			a(1) = 0 since 7 cannot be written as x^2 + 3*y^2 + 15*2^z with x,y,z nonnegative integers.
a(2) = 2 since the second prime congruent to 7 modulo 12 is 19 and 19 = 1^2 + 3*1^2 + 15*2^0 = 2^2 + 3*0^2 + 15*2^0.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=Prime[n];
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[MemberQ[{2},Mod[Part[Part[f[n],i],1],3]]&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    n=0;Do[If[Mod[p[m],12]!=7,Goto[aa]];n=n+1;r=0;Do[If[QQ[p[m]-15*2^k],Do[If[SQ[p[m]-15*2^k-3x^2],r=r+1],{x,0,Sqrt[(p[m]-15*2^k)/3]}]],{k,0,Log[2,p[m]/15]}];Print[n," ",r];Label[aa],{m,1,315}]

A155575 Intersection of A000404 and A154778: N = a^2 + b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

29, 41, 45, 61, 89, 101, 109, 116, 145, 149, 164, 180, 181, 205, 225, 229, 241, 244, 245, 261, 269, 281, 305, 349, 356, 369, 389, 401, 404, 405, 409, 421, 436, 445, 449, 461, 464, 505, 509, 521, 541, 545, 549, 569, 580, 596, 601, 641, 656, 661, 701, 709, 720
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155565 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155575(n,/* optional 2nd arg allows us to get other sequences */c=[5,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155575(n) & print1(n","))

A155576 Intersection of A000404 and A155716: N = a^2 + b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

10, 25, 40, 58, 73, 90, 97, 100, 106, 145, 160, 193, 202, 225, 232, 241, 250, 265, 292, 298, 313, 337, 346, 360, 388, 394, 400, 409, 424, 433, 457, 490, 505, 522, 538, 577, 580, 586, 601, 625, 634, 640, 657, 673, 730, 745, 769, 772, 778, 808, 810, 841, 865
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155566 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155576(n,/* optional 2nd arg allows us to get other sequences */c=[6,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155576(n) & print1(n","))

A155577 Intersection of A154777 and A154778: N = a^2 + 2b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

6, 9, 24, 36, 41, 54, 81, 86, 89, 96, 129, 134, 144, 150, 164, 166, 201, 214, 216, 225, 241, 246, 249, 281, 294, 321, 324, 326, 344, 356, 369, 384, 401, 409, 441, 449, 454, 486, 489, 516, 521, 534, 536, 566, 569, 576, 600, 601, 614, 641, 656, 664, 681, 694
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155567 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155577(n,/* optional 2nd arg allows us to get other sequences */c=[5,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155577(n) & print1(n","))

A155709 Intersection of A154777 and A155716: N = a^2 + 2b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

22, 33, 73, 88, 97, 118, 121, 132, 150, 166, 177, 193, 198, 214, 225, 241, 249, 262, 292, 294, 297, 313, 321, 337, 352, 358, 388, 393, 409, 433, 438, 441, 454, 457, 472, 484, 502, 528, 537, 550, 577, 582, 600, 601, 649, 657, 664, 673, 681, 694, 708, 726, 753
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155569 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155709(n,/* optional 2nd arg allows us to get other sequences */c=[6,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155709(n) & print1(n","))
Previous Showing 21-30 of 34 results. Next