cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A092572 Numbers of the form x^2 + 3y^2 where x and y are positive integers.

Original entry on oeis.org

4, 7, 12, 13, 16, 19, 21, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63, 64, 67, 73, 76, 79, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 124, 127, 129, 133, 139, 144, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Comments

Superset of primes of the form 6n+1 (A002476).
It seems that all integer solutions of ((a+b)^3 - (a-b)^3) / (2*b) = c^3 have c = x^2 + 3*y^2. - Juergen Buchmueller (pullmoll(AT)t-online.de), Apr 04 2008
To prove the case of cubes in Fermat's last theorem, Euler considered numbers of the form a^2 + 3b^2. In the equation x^3 + y^3 = z^3, Euler specified that x = a - b and y = a + b. - Alonso del Arte, Jul 19 2012
All terms == 0,1,3,4, or 7 (mod 9). - Robert Israel, Apr 03 2017

Examples

			7 is of the specified form, since 2^2 + 3 * 1^2 = 7.
So is 12, since 3^2 + 3 * 1^2 = 12, and 13, with 1^2 + 3 * 2^2 = 13.
		

References

  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem. New York: Springer-Verlag (1979): 4.

Crossrefs

Cf. A002476, A092573, A092575, A158937 (similar definition but with duplicates left in).

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {seq(seq(x^2 + 3*y^2, x = 1 .. floor(sqrt(N - 3*y^2))),
      y=1..floor(sqrt(N/3-1)))}:
    sort(convert(S,list)); # Robert Israel, Apr 03 2017
  • Mathematica
    Union[Flatten[Table[a^2 + 3b^2, {a, 20}, {b, Ceiling[Sqrt[(400 - a^2)/3]]}]]] (* Alonso del Arte, Jul 19 2012 *)

A092573 Number of solutions to x^2 + 3y^2 = n in positive integers x and y.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Crossrefs

Programs

  • Maple
    N:= 300: # to get a(0)..a(N)
    V:= Vector(N):
    for y from 1 to floor(sqrt(N/3-1)) do
      js:= [seq(x^2+3*y^2, x=1..floor(sqrt(N-3*y^2)))];
      V[js]:= map(`+`,V[js],1);
    od:
    0,op(convert(V,list)); # Robert Israel, Apr 03 2017
  • Mathematica
    r[z_] := Reduce[x > 0 && y > 0 && x^2 + 3 y^2 == z, {x, y}, Integers]; Table[rz = r[z]; If[rz === False, 0, If[rz[[0]] === Or, Length[rz], 1]], {z, 0, 102}] (* Jean-François Alcover, Oct 23 2012 *)
    gf = (EllipticTheta[3, 0, x]-1)*(EllipticTheta[3, 0, x^3]-1)/4 + O[x]^105;
    CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2018, after Robert Israel *)

Formula

a(n) = ( A033716(n) - A000122(n) - A000122(n/3) + A000007(n) )/4. - Max Alekseyev, Sep 29 2012
G.f.: (Theta_3(0,x)-1)*(Theta_3(0,x^3)-1)/4 where Theta_3 is a Jacobi theta function. - Robert Israel, Apr 03 2017

Extensions

Definition corrected by David A. Corneth, Apr 03 2017

A092574 Positive integers that can be represented in the form x^2 + 3y^2 with (x,y) = 1 and x and y positive.

Original entry on oeis.org

4, 7, 12, 13, 19, 21, 28, 31, 37, 39, 43, 49, 52, 57, 61, 67, 73, 76, 79, 84, 91, 93, 97, 103, 109, 111, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 172, 181, 183, 193, 196, 199, 201, 211, 217, 219, 223, 228, 229, 237, 241, 244, 247, 259, 268
Offset: 1

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Comments

Superset of primes of the form 6n+1 (A002476).
For all proper solutions with nonnegative x and y see A244819. - Wolfdieter Lang, Mar 02 2021

Crossrefs

Showing 1-3 of 3 results.