cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A334578 Double subfactorials: a(n) = (-1)^floor(n/2) * n!! * Sum_{i=0..floor(n/2)} (-1)^i/(n-2*i)!!.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 29, 76, 233, 685, 2329, 7534, 27949, 97943, 391285, 1469144, 6260561, 24975449, 112690097, 474533530, 2253801941, 9965204131, 49583642701, 229199695012, 1190007424825, 5729992375301, 30940193045449, 154709794133126, 866325405272573
Offset: 0

Views

Author

Ryan Brooks, May 06 2020

Keywords

Examples

			a(5) = (5*3*1)*(1/(1) - 1/(3*1) + 1/(5*3*1)) = 15-5+1 = 11.
		

Crossrefs

Even bisection gives A000354.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, [0$2, 1$2][n+3],
          (n-1)*a(n-2)+(n-2)*a(n-4))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, May 06 2020
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n a[n-2] + (-1)^Floor[n/2]}, a, {n, 0, 32}] (* Jean-François Alcover, Nov 27 2020 *)

Formula

a(n) = n*a(n-2) + (-1)^floor(n/2).
a(2n) = A000354(n).
From Ryan Brooks, Oct 25 2020: (Start)
a(2n)/A006882(2n) ~ 1/sqrt(e) = A092605.
a(2n+1)/A006882(2n+1) ~ sqrt(Pi/(2*e))*erfi(1/sqrt(2)) = A306858. (End)

A209050 Pyramid angle = arccos(1/sqrt(e)) in radians.

Original entry on oeis.org

9, 1, 9, 1, 0, 6, 6, 5, 7, 2, 9, 3, 5, 8, 8, 4, 2, 2, 0, 4, 1, 3, 6, 1, 7, 1, 4, 8, 9, 6, 7, 4, 2, 7, 0, 5, 7, 5, 5, 6, 3, 0, 7, 3, 4, 0, 2, 0, 3, 5, 1, 1, 4, 7, 3, 9, 8, 5, 0, 9, 2, 4, 2, 8, 1, 5, 7, 5, 1, 3, 5, 6, 8, 3, 9, 3, 1, 3, 7, 2, 7, 1, 5, 1, 5, 1, 6, 4, 0, 4, 3, 4, 5, 1, 5, 8, 8, 8, 1, 9, 8, 7, 1, 2, 2, 1, 5, 8, 3, 0, 3
Offset: 0

Views

Author

Robert G. Wilson v, Mar 04 2012

Keywords

Examples

			= 0.91910665729358842204136171489674270575563073402035114...
= 52°.660932385299557203750879574284228798519442622806897...
= 52°39'.655943117973432225052774457053727911166557368413...
= 52°39'39.3565870784059335031664674232236746699934421048..."
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ ArcCos[ 1/Sqrt[ E]], 10, 111][[1]]
  • PARI
    acos(exp(-1/2)) \\ Charles R Greathouse IV, Mar 05 2012

Formula

arccos(1/sqrt(e)) = arccos(1/sqrt(A001113)) = arccos(1/A019774) = arccos(A092605).

A217249 Decimal expansion of Pi^2/sqrt(e).

Original entry on oeis.org

5, 9, 8, 6, 2, 1, 7, 6, 6, 8, 4, 9, 5, 4, 3, 8, 9, 7, 4, 9, 3, 2, 4, 5, 0, 7, 4, 7, 4, 2, 3, 6, 8, 9, 2, 5, 0, 1, 6, 5, 1, 0, 1, 0, 6, 5, 8, 9, 9, 3, 8, 6, 9, 8, 3, 3, 3, 4, 9, 4, 9, 1, 8, 5, 0, 6, 1, 4, 6, 6, 5, 5, 2, 6, 2, 4, 4, 4, 2, 8, 0, 6, 4, 2, 8, 2, 3
Offset: 1

Views

Author

Bruno Berselli, Mar 20 2013

Keywords

Examples

			5.9862176684954389749324507474236892501651010658993869833349491850614...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/Sqrt[E], 10, 90][[1]]

Formula

A352526 a(n) = Product_{k=0..n} Nimsum (2*k + 2), with Nimsum (2 + 2) = 0 replaced by 1.

Original entry on oeis.org

2, 2, 12, 48, 480, 3840, 53760, 645120, 11612160, 185794560, 4087480320, 81749606400, 2125489766400, 51011754393600, 1530352631808000, 42849873690624000, 1456895705481216000, 46620662575398912000, 1771585177865158656000, 63777066403145711616000, 2678636788932119887872000
Offset: 0

Views

Author

Peter McNair, Mar 19 2022

Keywords

Comments

Nimsum 2*k + 2 = A004443(2*k).
Sum_{n>0} 1/a(n) = 1/sqrt(e) = A092605.
Sum_{n>0} 1/a(2*n-1) = sinh(1/2) = A334367.
Sum_{n>0} 1/a(2*n) = cosh(1/2) - 2*sinh(1/2).
a(n)/2^n = abs(A265376(n+1)) = Product_{k=0..n} Nimsum k + 1, with Nimsum 1 + 1 = 0 replaced by 1, n > 0.

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[If[k == 1, 1, BitXor[2*k, 2]], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Mar 19 2022 *)
  • PARI
    a(n) = 2*prod(k=2,n,bitxor(2*k, 2))

Formula

a(n) = 2*Product_{k=2..n} A004443(2*k).
a(n) = 2^(n-1)*(n+1)!/floor((n+1)/2), n > 0.
a(n) = 2^(n-1)*(1+(-1)^n)*((n-1)!+n!)-((-1)^n-1)*(2*n)!!/2, n > 0.
a(n) = 2*a(n-1)*(n+(-1)^n), n > 1, with a(1) = 2.

A369881 Decimal expansion of 1/(2*sqrt(e)).

Original entry on oeis.org

3, 0, 3, 2, 6, 5, 3, 2, 9, 8, 5, 6, 3, 1, 6, 7, 1, 1, 8, 0, 1, 8, 9, 9, 7, 6, 7, 4, 9, 5, 5, 9, 0, 2, 2, 6, 7, 2, 0, 9, 5, 9, 0, 6, 7, 7, 4, 3, 5, 9, 3, 4, 7, 7, 8, 4, 1, 4, 4, 6, 0, 7, 9, 3, 6, 7, 5, 2, 8, 2, 5, 9, 7, 0, 6, 8, 7, 4, 2, 1, 1, 9, 9, 9, 3, 2, 3, 8, 0, 5, 7, 5, 3, 9, 9, 4, 7, 2, 8, 0, 1, 3, 2, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			0.30326532985631671180189976749559022672095906774359...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/(2*Sqrt[E]), 10, 105][[1]]
  • PARI
    exp(-1/2)/2

Formula

Equals A092605 / 2.
Equals exp(-(1 + A187832)).
Equals Sum_{n>=1} (-1)^(n+1)/A066318(n).
Equals lim_{n->oo} sqrt(n)*(((n+1)!)^(1/(2*(n+1))) - (n!)^(1/(2*n))) (Batinetu-Giurgiu, 2016).
Previous Showing 11-15 of 15 results.