cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A260304 a(n) = 5*a(n-1) - 5*a(n-2) for n>1, a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 5, 10, 25, 75, 250, 875, 3125, 11250, 40625, 146875, 531250, 1921875, 6953125, 25156250, 91015625, 329296875, 1191406250, 4310546875, 15595703125, 56425781250, 204150390625, 738623046875, 2672363281250, 9668701171875, 34981689453125, 126564941406250
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2015

Keywords

Comments

Lim_{n -> infinity} a(n + 1)/a(n) = 2 + phi = 3.6180339887..., where phi is the golden ratio (A001622).

Crossrefs

Cf. A093129: initial values 1,2; A081567: initial values 1,3.

Programs

  • Magma
    [n le 2 select n+1 else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 23 2015
    
  • Mathematica
    Table[((5 + 2 Sqrt[5]) ((5 - Sqrt[5])/2)^n + (5 - 2 Sqrt[5]) ((5 + Sqrt[5])/2)^n)/5, {n, 0, 30}]
    RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 5 a[n - 1] - 5 a[n - 2]}, a, {n, 0, 30}] (* Bruno Berselli, Nov 23 2015 *)
  • PARI
    a(n)=([0,1; -5,5]^n*[2;3])[1,1] \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: (2 - 7*x)/(1 - 5*x + 5*x^2).
a(n) = ((5 + 2*sqrt(5))*((5 - sqrt(5))/2)^n + (5 - 2*sqrt(5))*((5 + sqrt(5))/2)^n)/5.
a(n) = 2*A030191(n) - 7*A030191(n-1). - Bruno Berselli, Nov 23 2015

Extensions

Edited by Bruno Berselli, Nov 23 2015

A320101 Table read by rows: T(n,k) is the number of no-leaf subgraphs of the n X k grid where 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 5, 43, 1, 15, 463, 16372, 1, 50, 5193, 583199, 65485654, 1, 175, 58653, 20788249, 7354266811, 2602065897364, 1, 625, 663203, 741026781, 825905301851
Offset: 1

Views

Author

Peter Kagey, Oct 05 2018

Keywords

Examples

			Three of the T(4,3) = 463 subgraphs of the 4 X 3 grid with no leaf vertices are
  +   +---+      +   +   +      +   +---+
      |   |                         |   |
  +---+---+      +---+---+      +   +---+
  |   |    ,     |   |   |, and          .
  +---+   +      +   +---+      +---+   +
  |   |          |   |          |   |
  +---+   +      +---+   +      +---+   +
Table begins:
  n\k|    1    2     3        4          5             6
  ---+---------------------------------------------------
   1 |    1
   2 |    1    2
   3 |    1    5    43
   4 |    1   15   463    16372
   5 |    1   50  5193   583199   65485654
   6 |    1  175 58653 20788249 7354266811 2602065897364
		

Crossrefs

Previous Showing 11-12 of 12 results.