cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A378854 a(n) is the number of solid (3D) partitions of n with 2 layers and second layer a plane partition of 2.

Original entry on oeis.org

3, 9, 24, 51, 111, 213, 414, 756, 1374, 2409, 4206, 7152, 12096, 20109, 33198, 54111, 87648, 140520, 223953, 354006, 556419, 868584, 1348857, 2082225, 3198927, 4888944, 7438548, 11265141, 16990077, 25516401, 38175240, 56894490, 84490935, 125028489, 184400952
Offset: 4

Views

Author

Wouter Meeussen, Feb 10 2025

Keywords

Comments

Appears to equal 3*A097391(n-3).

Examples

			a(4)=3 since the 3 solid partitions of {2,2} are:
  [{{2}},{{2}}], [{{1,1}},{{1,1}}], [{{1},{1}},{{1},{1}}]
a(5)=9 since the 9 solid partitions of {3,2} are:
  [{{3}},{{2}}], [{{2,1}},{{2}}], [{{2,1}},{{1,1}}], [{{1,1,1}},{{1,1}}], [{{2},{1}},{{2}}], [{{2},{1}},{{1},{1}}],[{{1,1},{1}},{{1,1}}], [{{1,1},{1}},{{1},{1}}], [{{1},{1},{1}},{{1},{1}}]
		

Crossrefs

Programs

  • Mathematica
    Table[Length@solidformBTK[{n-2,2}],{n,4,22}] (* uses functions defined in link above *)
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(3*x^2*(prod(i=1,N, 1/(1-x^i)^i)-prod(i=1,N, 1/(1-x^i))))}
    A_x(40) \\ John Tyler Rascoe, Feb 20 2025

Formula

From John Tyler Rascoe, Feb 20 2025: (Start)
a(n) = 3*(A000219(n-2) - A000041(n-2)).
G.f.: 3*x^2 * (Product_{i>0} (1/(1-x^i)^i) - Product_{i>0} (1/(1-x^i)^i)). (End)

Extensions

a(23) onwards from John Tyler Rascoe, Feb 20 2025

A098052 T(n,k) counts the solid partitions of n that can be extended to a solid partition of n+1 in exactly (k+3) ways. Equivalently, the number of solid partitions of n that have exactly k+3 partitions of n+1 majoring them.

Original entry on oeis.org

1, 4, 4, 6, 10, 12, 0, 4, 4, 30, 12, 12, 0, 0, 1, 16, 48, 18, 48, 0, 6, 4, 4, 70, 72, 100, 27, 12, 22, 20, 102, 114, 232, 76, 66, 68, 6, 10, 114, 231, 448, 232, 180, 201, 48, 16, 204, 330, 728, 628, 462, 546, 184, 24
Offset: 4

Views

Author

Wouter Meeussen, Sep 11 2004

Keywords

Comments

Row sums are A000293 (solid partitions) by definition.
First column is conjectured to be A007426 = tau_4(n).
All solid partitions can be extended in at least 4 ways (hence the offset 4).

Examples

			T(5,7)=1 because there is only 1 solid partition of 5 [{{2, 1}, {1}}, {{1}}] that can be extended to a solid partition of 6 in exactly (7+3 =10) ways:
  [{{2,1},{2}},{{1}}], [{{2,1},{1,1}},{{1}}], [{{2,2},{1}},{{1}}],
  [{{3,1},{1}},{{1}}], [{{2,1,1},{1}},{{1}}], [{{2,1},{1},{1}},{{1}}],
  [{{2,1},{1}},{{2}}], [{{2,1},{1}},{{1,1}}], [{{2,1},{1}},{{1},{1}}],
  [{{2,1},{1}},{{1}},{{1}}].
Table starts
  1;
  4;
  4,6;
  10,12,0,4;
  4,30,12,12,0,0,1;
  16,48,18,48,0,6,4;
  4,70,72,100,27,12,22;
  20,102,114,232,76,66,68,6;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* functions 'solidform' and 'coversplaneQ', see A096574 *)
    Table[ Rest@BinCounts[Count[Flatten[solidformBTK/@IntegerPartitions[n+1]],q_/;coverssolidQ[q,#]]&/@Flatten[solidformBTK/@IntegerPartitions[n]]] ,{n,1,8}] (* Wouter Meeussen, Feb 03 2025 *)

A382247 Number of fixed points of solid partitions under twice the 'time-lapse' operation.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 7, 12, 16, 22, 32, 50, 68, 96, 134, 195, 261, 364, 497, 701, 941, 1288, 1738
Offset: 1

Views

Author

Wouter Meeussen, Mar 19 2025

Keywords

Comments

Permutes the 4 axes of the 4D-Ferrers plot of the solid partitions as 2143.

Examples

			z[{{2},{2}}] -> z[{{1,1}},{{1,1}}] -> z[{{2},{2}}] under the 'lapse' operation.
		

Crossrefs

Programs

  • Mathematica
    Tr/@Table[Count[solidformBTK[par], arg_z/; Nest[lapse,arg,2]===arg], {n, 20}, {par, IntegerPartitions[n]}]

A380893 Triangle read by rows: T(n,m) = number of solid partitions of n with shape of a plane partition of m.

Original entry on oeis.org

1, 1, 3, 1, 3, 6, 1, 6, 6, 13, 1, 6, 15, 13, 24, 1, 9, 21, 37, 24, 48, 1, 9, 30, 58, 75, 48, 86, 1, 12, 39, 95, 132, 159, 86, 160, 1, 12, 54, 128, 231, 297, 299, 160, 282, 1, 15, 63, 197, 345, 552, 593, 574, 282, 500, 1, 15, 81, 251, 546, 873, 1156, 1180, 1038, 500, 859, 1, 18, 96, 345, 771, 1452, 1933, 2390, 2208, 1874, 859, 1479, 1, 18, 114, 432, 1110, 2151, 3340, 4154, 4614, 4082, 3268, 1479, 2485, 1, 21, 132, 558, 1491, 3276, 5214, 7430, 8310, 8758, 7276, 5685, 2485, 4167
Offset: 1

Views

Author

Wouter Meeussen, Feb 07 2025

Keywords

Comments

A solid (or 3D) partition of n describes a piling of boxes in a corner with heights nonincreasing away from the corner, and containing integers, similarly nonincreasing, that sum to n.
The shape of a solid partitions is defined as the plane partition containing the heights of the piling, irrespective of the numerical content of the boxes.
Row sums equal A000293, T(n,n) = T(n+1,n) equals A000219;
Equals number of solid partitions with total by layer equal to partitions of n with largest part m.

Examples

			Table starts as:
  1,
  1,3
  1,3,6
  1,6,6,13
  1,6,15,13,24
  1,9,21,37,24,48
T(4,2) = 6 since the solid partitions of 4 with shapes a plane partition of 2 are:
 z[{{2,2}}], z[{{3,1}}], z[{{2},{2}}], z[{{3},{1}}], z[{{3}},{{1}}], z[{{2}},{{2}}]
with shapes equal to these plane partitions:
  {{2}}, {{2}}, {{1,1}}, {{1,1}}, {{1},{1}}, {{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    Table[Tr@(Count[First[lapse[#]]&/@Flatten[sols=Table[solidformBTK[par],{par,IntegerPartitions[n]}] ],#]&/@planepartitions[k]),{n,10},{k,n}] (* using functions from link above, or with the faster second program: *)
    Table[ Sum[Length[solidformBTK[TransposePartition@par]],{par,IntegerPartitions[n,{k}]} ],{n,16},{k,n}] (* with transposePartition[par:{Integer..}]:=Count[par,i/;i>=#]&/@Range[Max[par]] *)

A381265 a(n) is the number of solid (3D) partitions of n with 2 layers and second layer a plane partition of 3.

Original entry on oeis.org

6, 21, 57, 138, 294, 606, 1170, 2208, 4008, 7176, 12492, 21510, 36348, 60801, 100281, 164019, 265263, 425853
Offset: 3

Views

Author

Wouter Meeussen, Feb 18 2025

Keywords

Comments

Conjecture: equal to 3*(2*A000219 -A000990 -2*A000041 +1) tested up to n=20.

Examples

			a(3)=6 since the 6 solid partitions of {3,3} are:
  z[{{3}},{{3}}],
  z[{{2,1}},{{2,1}}],
  z[{{1,1,1}},{{1,1,1}}],z[{{2},{1}},{{2},{1}}],
  z[{{1,1},{1}},{{1,1},{1}}],
  z[{{1},{1},{1}},{{1},{1},{1}}].
		

Crossrefs

Programs

  • Mathematica
    Table[Length@solidformBTK[{n,3}],{n,3,20}] (* or *)
    g=20;3 CoefficientList[Series[2/Product[(1-x^m)^m,{m,g}]+ 1/(1-x)-(1-x)/Product[(1-x^m)^2,{m,g}]-2/Product[(1-x^m),{m,g}],{x,0,g}],x]

Formula

G.f.: 3*(2*Product_{k>0} 1/(1-x^k)^k -(1-x)*Product_{k>0} 1/(1-x^k)^2 - 2*Product_{k>0} 1/(1-x^k) + 1/(1 - x)) (conjectured).

A381332 a(n) is the number of different hooklength lists of the plane partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 19, 31, 52, 86, 146, 231, 392, 615, 1006, 1594, 2612, 4062, 6518, 10116, 15958, 24557, 38565, 58548
Offset: 1

Views

Author

Wouter Meeussen, Feb 20 2025

Keywords

Comments

The hooklength list of a plane partition is the sorted list of 3D hooklengths of its 3D Ferrers plot, analogous to the classic 2D case.

Examples

			The plane partition {{2,1},{2}} has hooklengths {{{4,2},{1}},{{2,1}}} and so hooklength list is {4,2,2,1,1}. So a(2) = 1.
The 24 plane partitions of n=5 generate only these 6 hooklength lists: {4,2,2,1,1}, {4,3,2,1,1}, {5,2,1,1,1}, {5,2,2,1,1}, {5,3,2,1,1}, {5,4,3,2,1}. So a(5) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[planehooks/@planepartitions[n]]],{n,20}]
Previous Showing 11-16 of 16 results.