cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A256922 Decimal expansion of Sum_{k>=2} (-1)^k*zeta(k)/(k*2^k).

Original entry on oeis.org

1, 6, 7, 8, 2, 5, 5, 9, 4, 8, 1, 5, 5, 2, 1, 2, 0, 7, 9, 5, 7, 7, 3, 7, 5, 9, 9, 2, 5, 9, 5, 5, 4, 0, 0, 3, 2, 6, 9, 2, 2, 6, 9, 4, 0, 0, 6, 7, 3, 6, 2, 3, 3, 1, 0, 3, 9, 0, 1, 5, 1, 4, 3, 6, 8, 5, 1, 0, 9, 1, 2, 6, 3, 6, 1, 5, 5, 0, 6, 5, 9, 7, 5, 4, 4, 2, 1, 8, 3, 9, 7, 8, 7, 1, 9, 9, 5, 4, 1, 0, 6, 6, 3, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.167825594815521207957737599259554003269226940067362331039...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/2 + (1/2)*Log(Pi(R)) - Log(2); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[EulerGamma/2 + (1/2)*Log[Pi] - Log[2], 10, 105] // First
  • PARI
    Euler/2 + log(Pi)/2 - log(2) \\ Michel Marcus, Apr 13 2015
    

Formula

Equals A001620/2 + (1/2)*log(Pi) - log(2).
Equals Sum_{k>=1} (1/(2*k) - log(1 + 1/(2*k))). - Amiram Eldar, Jul 22 2020
Equals (A001620 - A094640)/2. - Ruud H.G. van Tol, Apr 26 2025

A126389 Numerators in a series for the "alternating Euler constant" log(4/Pi).

Original entry on oeis.org

1, -1, 2, -2, -1, 1, 1, -1, 1, -1, 3, -3, -2, 2, 2, -2, 2, -2, 2, -2, 4, -4, -3, 3, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 3, -3, -1, 1, 1, -1, 1, -1, 3, -3, 1, -1, 3, -3, 3, -3, 5, -5, -4, 4, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 4, -4, -2, 2
Offset: 2

Views

Author

Jonathan Sondow, Jan 01 2007

Keywords

Comments

Nonzero values of (-1)^n*b(floor(n/2)) for n > 1, where b(n) = (# of 1's) - (# of 0's) in the base 2 expansion of n. The denominators of the series are A126388.

Examples

			floor(15/2) = 7 = 111 base 2, which has (# of 1's) - (# of 0's) = 3, so (-1)^15*3 = -3 is a term.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := DigitCount[n,2,1] - DigitCount[n,2,0]; L = {}; Do[If[b[Floor[n/2]] != 0, L = Append[L,(-1)^n*b[Floor[n/2]]]], {n,2,100}]; L

Formula

Log(4/Pi) = 1/2 - 1/3 + 2/6 - 2/7 - 1/8 + 1/9 + 1/10 - 1/11 + 1/12 - 1/13 + 3/14 - 3/15 - 2/16 + 2/17 + 2/22 - ...

A344716 Decimal expansion of (gamma + log(4/Pi))/2, where gamma is Euler's constant.

Original entry on oeis.org

4, 0, 9, 3, 9, 0, 0, 7, 0, 0, 8, 6, 0, 1, 1, 6, 5, 2, 6, 4, 8, 7, 7, 4, 4, 9, 0, 8, 2, 2, 8, 4, 8, 4, 2, 7, 7, 7, 2, 9, 3, 2, 3, 9, 5, 8, 7, 2, 5, 6, 1, 2, 6, 7, 7, 6, 6, 7, 5, 2, 0, 9, 1, 1, 9, 9, 7, 5, 8, 6, 0, 0, 4, 1, 6, 1, 1, 4, 0, 1, 1, 1, 8, 2, 5, 2, 5, 2, 2, 3, 5, 0, 4, 5, 4, 7, 2, 0, 8, 4, 4, 8, 3, 1, 2
Offset: 0

Views

Author

Kevin Ryde, May 27 2021

Keywords

Examples

			0.40939007008601165264877449082284842...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(EulerGamma + Log[4/Pi])/2, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)

Formula

Equals (A001620 + A094640)/2, the mean of Euler's constant and alternating Euler's constant.
Equals Sum_{n>=1} A000120(n) / (2*n*(2*n+1)), where A000120 is the number of 1-bits of n in binary. [Allouche, Shallit, Sondow]
Equals Sum_{k>=1} (1/(2*k-1) - log(1+1/(2*k-1))). - Amiram Eldar, Jun 19 2023

A374776 Decimal expansion of (2 + gamma - log(Pi/4))/4.

Original entry on oeis.org

7, 0, 4, 6, 9, 5, 0, 3, 5, 0, 4, 3, 0, 0, 5, 8, 2, 6, 3, 2, 4, 3, 8, 7, 2, 4, 5, 4, 1, 1, 4, 2, 4, 2, 1, 3, 8, 8, 6, 4, 6, 6, 1, 9, 7, 9, 3, 6, 2, 8, 0, 6, 3, 3, 8, 8, 3, 3, 7, 6, 0, 4, 5, 5, 9, 9, 8, 7, 9, 3, 0, 0, 2, 0, 8, 0, 5, 7, 0, 0, 5, 5, 9, 1, 2, 6, 2, 6, 1, 1, 7, 5, 2, 2, 7, 3, 6, 0, 4, 2
Offset: 0

Views

Author

Stefano Spezia, Jul 19 2024

Keywords

Examples

			0.7046950350430058263243872454114242138864661979...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2+EulerGamma-Log[Pi/4])/4,10,100][[1]]

A307671 Decimal expansion of the alternating convergent series S = Sum_{k>=0} (-1)^k*f(k), where f(k) = harmonic(2^k) - k*log(2) - gamma, harmonic(m) is the Sum_{j=1..m} 1/j, and gamma is Euler-Mascheroni constant.

Original entry on oeis.org

2, 7, 2, 3, 4, 3, 5, 8, 7, 7, 0, 7, 5, 9, 6, 7, 6, 4, 7, 8, 4, 0, 7, 0, 6, 7, 6, 9, 2, 3, 9, 5, 5, 5, 7, 8, 7, 4, 8, 2, 2, 5, 1, 0, 8, 0, 6, 4, 3, 9, 5, 8, 7, 1, 6, 4, 5, 3, 8, 9, 6, 2, 0, 4, 1, 2, 8, 3, 7, 5, 9, 7, 0, 0, 5, 7, 2, 9, 6, 5, 1, 1, 5, 0, 1, 2, 9, 8, 4, 6, 1, 7, 7, 3, 1, 3, 1, 7, 3, 9, 8, 0, 2, 7
Offset: 0

Views

Author

Luis H. Gallardo, Apr 20 2019

Keywords

Examples

			0.272343587707596764784070676923955578748225108064395871645389620412837597...
		

Crossrefs

Cf. A001620 (Euler-Mascheroni), A001008/A002805 (harmonic), A002162 (log(2)), A094640 (alternate Euler's constant), A256921 (a similar constant).

Programs

  • Maple
    evalf(Sum((-1)^k*(harmonic(2^k) - k*log(2) - gamma), k=0..infinity), 120); # Vaclav Kotesovec, Apr 30 2019
  • Mathematica
    digits = 104; s = NSum[(-1)^k*(HarmonicNumber[2^k] - k*Log[2] - EulerGamma), {k, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10]; RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Apr 28 2019 *)
  • PARI
    default(realprecision, 120); sumalt(k=0, (-1)^k*(psi(2^k+1) - k*log(2))) \\ Vaclav Kotesovec, Apr 30 2019
Previous Showing 11-15 of 15 results.