cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A320918 Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.

Original entry on oeis.org

3, -9, 41, -186, 845, -3844, 17510, -79865, 364741, -1667859, 7636046, -35002493, 160633658, -738017016, 3394477491, -15629323441, 72036344133, -332346150886, 1534759151873, -7093873005004, 32817327856690, -151943731458257, 704053152985509, -3264786419847751
Offset: 0

Views

Author

Kai Wang, Oct 24 2018

Keywords

Comments

In general, for integer h, k let
X = (sin^(h+k)(2*Pi/7))/(sin^(h)(4*Pi/7)*sin^(k)(8*Pi/7)),
Y = (sin^(h+k)(4*Pi/7))/(sin^(h)(8*Pi/7)*sin^(k)(2*Pi/7)),
Z = (sin^(h+k)(8*Pi/7))/(sin^(h)(2*Pi/7)*sin^(k)(4*Pi/7)).
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n, n = 0, 1, 2, ... is an integer sequence.
Instances of such sequences with (h,k) values:
(-3,0), (0,3), (3,-3): gives A274663;
(-3,3), (0,-3): give A274664;
(-2,0), (0,2), (2,-2): give A198636;
(-2,-3), (-1,-2), (2,-1), (3,-1): give A274032;
(-1,-1), (-1,2): give A215076;
(-1,0), (0,1), (1,-1): give A094648;
(-1,1), (0,-1), (1,0): give A274975;
(1,1), (-2,1), (1,-2): give A274220;
(1,2), (-3,1), (2,-3): give A274075;
(1,3): this sequence.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
    -9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # Peter Luschny, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
    LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* Harvey P. Dale, Dec 10 2023 *)
  • PARI
    polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ Joerg Arndt, Oct 24 2018
    
  • PARI
    Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ Colin Barker, Dec 09 2018

Formula

a(n) = ((sin^4(2*Pi/7))/(sin(4*Pi/7)*sin^3(8*Pi/7)))^n
+ ((sin^4(4*Pi/7))/(sin(8*Pi/7)*sin^3(2*Pi/7)))^n
+ ((sin^4(8*Pi/7))/(sin(2*Pi/7)*sin^3(4*Pi/7)))^n.
a(n) = -9*a(n-1) - 20*a(n-2) + a(n-3) for n>2.
G.f.: (3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3). - Colin Barker, Dec 09 2018

A321175 a(n) = -a(n-1) + 2*a(n-2) + a(n-3), a(0) = -1, a(1) = -2, a(2) = 3.

Original entry on oeis.org

-1, -2, 3, -8, 12, -25, 41, -79, 136, -253, 446, -816, 1455, -2641, 4735, -8562, 15391, -27780, 50000, -90169, 162389, -292727, 527336, -950401, 1712346, -3085812, 5560103, -10019381, 18053775, -32532434, 58620603
Offset: 0

Views

Author

Kai Wang, Jan 10 2019

Keywords

Comments

Let {X,Y,Z} be the roots of the cubic equation t^3 + at^2 + bt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
This sequence has (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(2k), 2*cos(4k), 2*cos(8k)).
A094648: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(8k), 2*cos(2k), 2*cos(4k)).
A321461 : (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(4k), 2*cos(8k), 2*cos(2k)).
X = sin(2k)/sin(8k), Y = sin(4k)/sin(2k), Z = sin(8k)/sin(4k).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,2,1},{-1,-2,3},50] (* Stefano Spezia, Jan 11 2019 *)
  • PARI
    Vec(-(1 + 3*x - 3*x^2) / (1 + x - 2*x^2 - x^3) + O(x^30)) \\ Colin Barker, Jan 11 2019

Formula

G.f.: -(1 + 3*x - 3*x^2) / (1 + x - 2*x^2 - x^3). - Colin Barker, Jan 11 2019

A321461 a(n) = -a(n-1) + 2*a(n-2) + a(n-3), a(0) = -1, a(1) = -2, a(2) = -4.

Original entry on oeis.org

-1, -2, -4, -1, -9, 3, -22, 19, -60, 76, -177, 269, -547, 908, -1733, 3002, -5560, 9831, -17949, 32051, -58118, 104271, -188456, 338880, -611521, 1100825, -1984987, 3575116, -6444265, 11609510, -20922924
Offset: 0

Views

Author

Kai Wang, Jan 10 2019

Keywords

Comments

Let {X,Y,Z} be the roots of the cubic equation t^3 + at^2 + bt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
This sequence has (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(4k), 2*cos(8k), 2*cos(2k)).
A094648: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(8k), 2*cos(2k), 2*cos(4k)).
A321175: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(2k), 2*cos(4k), 2*cos(8k)).
X = sin(2k)/sin(8k), Y = sin(4k)/sin(2k), Z = sin(8k)/sin(4k).

Crossrefs

Programs

  • PARI
    Vec(-(1 + 3*x + 4*x^2) / (1 + x - 2*x^2 - x^3) + O(x^40)) \\ Colin Barker, Feb 19 2019

Formula

G.f.: -(1 + 3*x + 4*x^2) / (1 + x - 2*x^2 - x^3). - Colin Barker, Feb 19 2019

Extensions

Title corrected by Colin Barker, Jan 12 2019

A094052 Number of walks of length n between two adjacent nodes in the cycle graph C_7.

Original entry on oeis.org

0, 1, 0, 3, 0, 10, 1, 35, 9, 126, 55, 462, 286, 1717, 1365, 6451, 6188, 24463, 27132, 93518, 116281, 360031, 490337, 1394582, 2043275, 5430530, 8439210, 21242341, 34621041, 83411715, 141290436, 328589491, 574274008, 1297937234, 2326683921
Offset: 0

Views

Author

Herbert Kociemba, May 31 2004

Keywords

Comments

In general, a(n,m) = 2^n/m*Sum_{k=0..m-1} cos(2*Pi*k/m)^(n+1) counts walks of length n between two adjacent nodes in the cycle graph C_m.

Crossrefs

Equals A095307(n+1) - A095308(n-1).

Programs

  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[ 2^n/7 Sum[ Cos[2Pi*k/7]^(n + 1), {k, 0, 6}]]]; Table[ f[n], {n, 0, 34}] (* Robert G. Wilson v, Jun 01 2004 *)

Formula

a(n) = 2^n/7*Sum_{k=0..6} cos(2*Pi*k/7)^(n+1).
G.f.: x(1-x-x^2) / ((1-2x)(1+x-2x^2-x^3)).
7*a(n) = 2^n+A094648(n+1). - R. J. Mathar, Nov 05 2024

Extensions

More terms from Robert G. Wilson v, Jun 01 2004

A287396 a(n) = (7*(csc(2*Pi/7))^2)^n + (7*(csc(4*Pi/7))^2)^n + (7*(csc(8*Pi/7))^2)^n.

Original entry on oeis.org

3, 56, 1568, 53312, 1931776, 71300096, 2645479424, 98305622016, 3654656065536, 135885355483136, 5052615982317568, 187873377732526080, 6985794697679601664, 259756778648305139712, 9658687473893481906176, 359144636249686988029952, 13354285908291066433372160
Offset: 0

Views

Author

Kai Wang, May 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{56,-784,3136},{3,56,1568},30] (* Harvey P. Dale, Aug 08 2017 *)
  • PARI
    Vec((3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3) + O(x^30)) \\ Colin Barker, May 25 2017
    
  • PARI
    polsym(x^3 - 56*x^2 + 784* x - 3136, 20) \\ Joerg Arndt, May 26 2017

Formula

a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 56*x^2 + 784* x - 3136, x1 = 7*(csc(2*Pi/7))^2, x2 = 7*(csc(4*Pi/7))^2, x3 = 7*(csc(8*Pi/7))^2.
a(n) = 56*a(n-1) - 784*a(n-2) + 3136*a(n-3) for n>2, a(0) = 3, a(1) = 56, a(2) = 1568.
G.f.: (3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3). - Colin Barker, May 25 2017

A287405 a(n) = (7*(cot(1*Pi/7))^2)^n + (7*(cot(2*Pi/7))^2)^n + (7*(cot(4*Pi/7))^2)^n.

Original entry on oeis.org

3, 35, 931, 27587, 830403, 25054435, 756187747, 22824258947, 688917131651, 20793986742179, 627637106311971, 18944339609269571, 571808137046942019, 17259221092289630307, 520945214725090792931, 15723995613526902256387, 474606601742375424297731
Offset: 0

Views

Author

Kai Wang, May 24 2017

Keywords

Comments

a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 35*x^2 + 147*x - 49, x1 = 7*(cot(1*Pi/7))^2, x2 = 7*(cot(2*Pi/7))^2, x3 = 7*(cot(4*Pi/7))^2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-147,49},{3,35,931},30] (* Harvey P. Dale, Mar 15 2018 *)
  • PARI
    Vec((3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3) + O(x^30)) \\ Colin Barker, May 26 2017
    
  • PARI
    polsym(x^3 - 35*x^2 + 147*x - 49, 20) \\ Joerg Arndt, May 26 2017

Formula

a(n) = 35*a(n-1) - 147*a(n-2) + 49*a(n-3), a(0) = 3, a(1) = 35, a(2) = 931.
Bisection of A215575: a(n) = A215575(2*n).
G.f.: (3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3). - Colin Barker, May 26 2017

A322461 Sum of n-th powers of the roots of x^3 + 8*x^2 + 5*x - 1.

Original entry on oeis.org

3, -8, 54, -389, 2834, -20673, 150825, -1100401, 8028410, -58574450, 427353149, -3117924532, 22748056061, -165967472679, 1210881576595, -8834467193304, 64455362190778, -470259679983109, 3430966161717678, -25031975531635101, 182630713764509309
Offset: 0

Views

Author

Kai Wang, Dec 09 2018

Keywords

Comments

Let A = cos(2*Pi/7), B = cos(4*Pi/7), C = cos(8*Pi/7).
For integers h, k let
X = 2*sqrt(7)*A^(h+k+1)/(B^h*C^k),
Y = 2*sqrt(7)*B^(h+k+1)/(C^h*A^k),
Z = 2*sqrt(7)*C^(h+k+1)/(A^h*B^k).
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n, n = 0, 1, 2, ... is an integer sequence.
This sequence has (h,k) = (0,1).

Crossrefs

Similar sequences with (h,k) values: A094648 (0,0), A274075 (1,0).

Programs

  • Mathematica
    LinearRecurrence[{-8, -5, 1}, {3, -8, 54}, 50] (* Amiram Eldar, Dec 09 2018 *)
  • PARI
    Vec((3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3) + O(x^25)) \\ Colin Barker, Dec 09 2018
    
  • PARI
    polsym(x^3 + 8*x^2 + 5*x - 1, 25) \\ Joerg Arndt, Dec 17 2018

Formula

a(n) = (2*sqrt(7)*A^2/C)^n + (2*sqrt(7)*B^2/A)^n + (2*sqrt(7)*C^2/B)^n, where A = cos(2*Pi/7), B = cos(4*Pi/7), C = cos(8*Pi/7).
a(n) = -8*a(n-2) - 5*a(n-2) + a(n-3) for n > 2.
G.f.: (3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3). - Colin Barker, Dec 09 2018

A218664 Coefficients of cubic polynomials p(x+n), where p(x) = x^3 + x^2 - 2*x - 1.

Original entry on oeis.org

1, 1, -2, -1, 1, 4, 3, -1, 1, 7, 14, 7, 1, 10, 31, 29, 1, 13, 54, 71, 1, 16, 83, 139, 1, 19, 118, 239, 1, 22, 159, 377, 1, 25, 206, 559, 1, 28, 259, 791, 1, 31, 318, 1079, 1, 34, 383, 1429, 1, 37, 454, 1847, 1, 40, 531, 2339, 1, 43, 614, 2911, 1, 46, 703, 3569, 1, 49, 798, 4319
Offset: 0

Views

Author

Roman Witula, Nov 04 2012

Keywords

Comments

We have p(x) = (x - c(1))*(x - c(2))*(x - c(4)), where c(j) := 2*cos(2*Pi*j/7). We note that c(4) = c(3) = -c(1/2), c(1) = s(3) and c(2) = -s(1), where s(j) := 2*sin(Pi*j/14). Moreover we obtain -p(-x) = x^3 - x^2 - 2*x + 1 = (x + c(1))*(x + c(2))*(x + c(4)), q(x) := -x^3*p(1/x) = x^3 + 2*x^2 + x - 1 = (x - c(1)^(-1))*(x - c(2)^(-1))*(x - c(4)^(-1)), and -q(-x) = x^3 - 2*x^2 + x + 1 = (x + c(1)^(-1))*(x + c(2)^(-1))*(x + c(4)^(-1)).
We also have p(x+2) = x^3 + 7*x^2 + 14*x + 7 = (x + s(2)^2)*(x + s(4)^2)*(x + s(6)^2). The polynomial -p(-x-2) = x^3 - 7*x^2 + 14*x - 7 = (x - s(2)^2)*(x - s(4)^2)*(x - s(6)^2) is known as Johannes Kepler's cubic polynomial (see Witula's book).
Let us set r(x) := p(x+1). It can be verified that -x^3*r(1/x) = x^3 - 3*x^2 - 4*x - 1 = (x - c(1)/c(4))*(x - c(4)/c(2))*(x - c(2)/c(1)); for example, we have c(1)^3 + c(1)^2 - 2*c(1) - 1 = 0 which implies that c(1)^2 + 2*c(1) = 1/(c(1) - 1), and then c(1)^2 + 2*c(1) = c(4)/c(2) since c(4)/c(2) = (c(1)^4 - 4*c(1)^2 + 2)/(c(1)^2 - 2).
The polynomials p(x+n) and the ones obtained as above (i.e., after simple algebraic transformations) are the characteristic polynomials of many sequences in the OEIS; see crossrefs.

References

  • R. Witula, Complex Numbers, Polynomials and Partial Fraction Decomposition, Part 3, Wydawnictwo Politechniki Slaskiej, Gliwice 2010 (Silesian Technical University publishers).

Crossrefs

Formula

We have a(4*k) = 1, a(4*k + 1) = 3*k + 1, a(4*k + 2) = 3*k^2 + 2*k - 2, a(4*k + 3) = k^3 + k^2 - 2*k - 1. Further, the following relations hold true: b(k+1) = b(k) + 3, c(k+1) = 2*b(k) -2*c(k) + 3, d(k+1) = b(k) - 2*c(k) - d(k) + 1, where p(x + k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: -(x^15 - x^14 - 2*x^13 + x^12 - 5*x^11 + 10*x^10 + 3*x^9 - 3*x^8 - 3*x^7 - 11*x^6 + 3*x^4 + x^3 + 2*x^2 - x - 1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013
Previous Showing 11-18 of 18 results.