cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A216054 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
		

References

  • E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89

Crossrefs

Cf. Similar sequences A216230, A216228, A216226, A216238

Programs

  • Mathematica
    Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)

Formula

T(n,n) = A080937(n).
T(n,n+1) = A080937(n+1).
T(n,n+2) = A094790(n+1).
T(n,n+3) = A094789(n+1).
T(n,n4) = T(n,n+5) = A005021(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A028495(n).

A216235 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 2 or if k-n >= 5, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 5, 0, 0, 0, 5, 9, 5, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 507, 417, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, ... row n=1
  0, 2, 5,  9, 14,  19,  19,   0,   0,   0, ... row n=2
  0, 0, 5, 14, 28,  47,  66,  66,   0,   0, ... row n=3
  0, 0, 0, 14, 42,  89, 155, 221, 221,   0, ... row n=4
  0, 0, 0,  0, 42, 131, 286, 507, 728, 728, ... row n=5
  ...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = A080937(n+1).
T(n,n+1) = A094790(n+1).
T(n,n+2) = A094789(n+1).
T(n,n+3) = T(n,n+4) = A005021(n).
Sum_{k=0..n} T(n-k,k) = A028495(n+1). - Philippe Deléham, Mar 23 2013

A099918 A Chebyshev transform related to the 7th cyclotomic polynomial.

Original entry on oeis.org

1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1
Offset: 0

Views

Author

Paul Barry, Oct 30 2004

Keywords

Comments

The g.f. is a Chebyshev transform of 1/(1+x-2x^2-x^3) under the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The denominator is the 7th cyclotomic polynomial. The inverse of the 7 cyclotomic polynomial A014016 is given by sum{k=0..n, A099918(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}.

Crossrefs

Cf. A099860.

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{1,-1,2,-2,1,-1},90] (* Harvey P. Dale, May 25 2019 *)

Formula

G.f.: (1+x^2)^2/(1+x+x^2+x^3+x^4+x^5+x^6).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)^(-1)^k*b(n-2k), where b(n)=A094790(n/2+1)(1+(-1)^n)/2+A094789((n+1)/2)(1-(-1)^n)/2=(-1)^n*A006053(n+2).
Previous Showing 11-13 of 13 results.