cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A253425 Lengths of runs of identical terms in A253415.

Original entry on oeis.org

1, 1, 6, 11, 18, 12, 5, 22, 91, 143, 1, 93, 370, 182, 20, 20, 315, 332, 973, 157, 1223, 1807, 325, 4044, 7412, 11211, 4600, 2176, 14848, 4659, 3123, 10852, 1678, 20862, 3348
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 31 2014

Keywords

Crossrefs

Programs

Extensions

a(14)-a(35) from Michael De Vlieger, Jan 23 2022

A308746 a(1) = 1, and for n > 1, a(n) is the greatest k > 0 such that (a(1), ..., a(n-1)) can be split into k chunks of contiguous terms and those chunks have the same sum.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 4, 2, 5, 1, 6, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 5, 1, 1, 1, 2, 2, 2, 2, 2, 6, 2, 2, 2, 4, 2, 7, 1, 2, 2, 2, 2, 1, 1, 8, 2, 2, 3, 3, 9, 3, 3, 3, 10, 2, 2, 2
Offset: 1

Views

Author

Rémy Sigrist, Jun 21 2019

Keywords

Comments

For any n > 0, a(n) divides Sum_{k = 1..n-1} a(k).
Is this sequence unbounded?

Examples

			The first terms, alongside the corresponding chunks, are:
  n   a(n)  Chunks (separated by pipes)
  --  ----  -------------------------------------
   1     1
   2     1  1
   3     2  1|1
   4     2  1 1|2
   5     3  1 1|2|2
   6     1  1 1 2 2 3
   7     1  1 1 2 2 3 1
   8     1  1 1 2 2 3 1 1
   9     2  1 1 2 2|3 1 1 1
  10     1  1 1 2 2 3 1 1 1 2
  11     1  1 1 2 2 3 1 1 1 2 1
  12     1  1 1 2 2 3 1 1 1 2 1 1
  13     1  1 1 2 2 3 1 1 1 2 1 1 1
  14     3  1 1 2 2|3 1 1 1|2 1 1 1 1
  15     1  1 1 2 2 3 1 1 1 2 1 1 1 1 3
  16     2  1 1 2 2 3 1 1|1 2 1 1 1 1 3 1
  17     4  1 1 2 2|3 1 1 1|2 1 1 1 1|3 1 2
  18     2  1 1 2 2 3 1 1 1 2|1 1 1 1 3 1 2 4
  19     5  1 1 2 2|3 1 1 1|2 1 1 1 1|3 1 2|4 2
  20     1  1 1 2 2 3 1 1 1 2 1 1 1 1 3 1 2 4 2 5
		

Crossrefs

Cf. A095258.

Programs

  • PARI
    See Links section.
Previous Showing 11-12 of 12 results.