Original entry on oeis.org
4, 6, 7, 8, 9, 10, 11, 15, 17, 19, 23, 25, 26, 29, 31, 47, 53, 65, 67, 71, 73, 113, 127, 199, 257, 349, 421, 433, 449, 691, 761, 823, 991, 1237, 1277, 1399, 1531, 1571, 3461, 3697, 4933, 6199, 7351
Offset: 1
A247250
Indices of Pell numbers having exactly one primitive prime factor.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 24, 29, 30, 32, 33, 35, 38, 41, 42, 50, 53, 54, 56, 58, 59, 66, 69, 89, 90, 94, 95, 97, 99, 101, 104, 117, 118, 120, 135, 138, 160, 167, 181, 191, 210, 221, 237, 242, 247
Offset: 1
Pell(1) = 1, which has no prime factors, so 1 is not in this sequence.
Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor, and 3 is the only primitive prime factor of Pell(4), so 4 is in this sequence.
Pell(5) = 29, which is a prime and the only primitive prime factor of itself, so 5 is in this sequence.
Pell(12) = 13860 = 2^2 * 3^2 * 5 * 7 * 11, but none of 2, 3, 5, 7 is a primitive prime factor, and 11 is the only primitive prime factor of Pell(12), so 12 is in this sequence.
Pell(14) = 80782 = 2 * 13^2 * 239, but neither 2 nor 13 is a primitive prime factor, and 239 is the only primitive prime factor of Pell(14), so 14 is in this sequence.
Pell(19) = 6625109 = 37 * 179057, both of which are primitive prime factors of Pell(19), so 19 is not in this sequence.
Cf.
A152012 (for Fibonacci numbers).
-
Select[Range[1000], PrimePowerQ[(1-Sqrt[2])^EulerPhi[#]*Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])]/GCD[Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])], # ]]&] - Eric Chen, Dec 12 2014
pell[n_] := pell[n] = ((1+Sqrt[2])^n-(1-Sqrt[2])^n )/(2*Sqrt[2]) // Round; primitivePrimeFactors[n_] := Cases[FactorInteger[pell[n]][[All, 1]], p_ /; And @@ (GCD[p, #] == 1 & /@ Array[pell, n-1])]; Reap[For[n=2, n <= 200, n++, If[Length[primitivePrimeFactors[n]] == 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2014 *)
-
pell(n) = imag((1 + quadgen(8))^n);
isok(pf, vp) = sum(i=1, #pf, vecsearch(vp, pf[i]) == 0) == 1;
lista(nn) = {vp = []; for (n=2, nn, pf = factor(pell(n))[,1]; if (isok(pf, vp), print1(n, ", ")); vp = vecsort(concat(vp, pf),, 8););} \\ Michel Marcus, Nov 29 2014
Two incorrect terms (72 and 110) deleted by
Colin Barker, Nov 29 2014
A305534
Index of the smallest prime in the n-Fibonacci sequence, or the Lucas U(n,-1) sequence.
Original entry on oeis.org
3, 2, 2, 3, 2, 3, 2, 5, 29, 3, 2, 5, 2, 3, 23, 3, 2, 7, 2, 3, 29, 19, 2, 3, 83, 3, 53, 19, 2, 5, 2, 5, 5, 5479, 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5
Offset: 1
Cf.
A001605,
A096650,
A209493, which are the indices of the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf.
A000045,
A000129,
A006190,
A001076,
A052918,
A005668,
A054413,
A041025,
A099371,
A041041,
A049666,
A041061 (the n-Fibonacci sequence for n = 1 to 12).
Cf.
A302990 (for n-step Fibonacci sequence instead of n-Fibonacci sequence).
-
b(n,k)=([n,1;1,0]^k)[1,2]
a(n)=for(k=1,2^12,if(ispseudoprime(b(n,k)),return(k)))
A331399
Numbers k such that A000129(k) and A001333(k) are both prime.
Original entry on oeis.org
2, 3, 5, 29, 59
Offset: 1
Cf.
A001110 (numbers that are both triangular and square),
A000129 (Pell numbers),
A001333 (numerators of continued fraction convergents to sqrt(2); equivalently, prime companion Pell numbers, divided by 2),
A096650 (indices of prime Pell numbers),
A099088 (indices of prime companion Pell numbers, divided by 2),
A331234 (triangular numbers having exactly 9 divisors).
Comments