cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A101087 Indices of prime values of A077020 (also A001607).

Original entry on oeis.org

4, 6, 7, 8, 9, 10, 11, 15, 17, 19, 23, 25, 26, 29, 31, 47, 53, 65, 67, 71, 73, 113, 127, 199, 257, 349, 421, 433, 449, 691, 761, 823, 991, 1237, 1277, 1399, 1531, 1571, 3461, 3697, 4933, 6199, 7351
Offset: 1

Views

Author

Gerard P. Michon, Dec 01 2004

Keywords

Comments

There are only 9 composite numbers in the entire sequence, namely: 4, 6, 8, 9, 10, 15, 25, 26 and 65.
If we are prepared to accept probable primes, then the sequence continues as follows: 9551, 9719, 11681, 12037, 14629, 14951, 19079, 20327, 22549, 30517, 51511, 52813, 60923, 73943, 79687, 91249, 115321, 117017, 169493, 172411, 174413, 237053, 285631, 318751, 327433. - David Broadhurst, May 23 2007

Crossrefs

Cf. A001607, A077020 (all values) and A101088 (prime values only). Similar to A001605 (Fibonacci primes), A000043 (Mersenne primes), A096650 (Pell primes), etc.

A247250 Indices of Pell numbers having exactly one primitive prime factor.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 24, 29, 30, 32, 33, 35, 38, 41, 42, 50, 53, 54, 56, 58, 59, 66, 69, 89, 90, 94, 95, 97, 99, 101, 104, 117, 118, 120, 135, 138, 160, 167, 181, 191, 210, 221, 237, 242, 247
Offset: 1

Views

Author

Eric Chen, Nov 29 2014

Keywords

Comments

Conjecture: The n-th Pell number A000129(n) has a primitive prime factor for all n > 1. (The n-th Fibonacci number A000045(n) has a primitive prime factor for all n except n = 0, 1, 2, 6, and 12.)
For prime p, all prime factors of Pell(p) are primitive. Hence the only primes in this sequence are the prime numbers in A096650, which gives the indices of prime Pell numbers.

Examples

			Pell(1) = 1, which has no prime factors, so 1 is not in this sequence.
Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor, and 3 is the only primitive prime factor of Pell(4), so 4 is in this sequence.
Pell(5) = 29, which is a prime and the only primitive prime factor of itself, so 5 is in this sequence.
Pell(12) = 13860 = 2^2 * 3^2 * 5 * 7 * 11, but none of 2, 3, 5, 7 is a primitive prime factor, and 11 is the only primitive prime factor of Pell(12), so 12 is in this sequence.
Pell(14) = 80782 = 2 * 13^2 * 239, but neither 2 nor 13 is a primitive prime factor, and 239 is the only primitive prime factor of Pell(14), so 14 is in this sequence.
Pell(19) = 6625109 = 37 * 179057, both of which are primitive prime factors of Pell(19), so 19 is not in this sequence.
		

Crossrefs

Cf. A152012 (for Fibonacci numbers).

Programs

  • Mathematica
    Select[Range[1000], PrimePowerQ[(1-Sqrt[2])^EulerPhi[#]*Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])]/GCD[Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])], # ]]&] - Eric Chen, Dec 12 2014
    pell[n_] := pell[n] = ((1+Sqrt[2])^n-(1-Sqrt[2])^n )/(2*Sqrt[2]) // Round; primitivePrimeFactors[n_] := Cases[FactorInteger[pell[n]][[All, 1]], p_ /; And @@ (GCD[p, #] == 1 & /@ Array[pell, n-1])]; Reap[For[n=2, n <= 200, n++, If[Length[primitivePrimeFactors[n]] == 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2014 *)
  • PARI
    pell(n) = imag((1 + quadgen(8))^n);
    isok(pf, vp) = sum(i=1, #pf, vecsearch(vp, pf[i]) == 0) == 1;
    lista(nn) = {vp = []; for (n=2, nn, pf = factor(pell(n))[,1]; if (isok(pf, vp), print1(n, ", ")); vp = vecsort(concat(vp, pf),, 8););} \\ Michel Marcus, Nov 29 2014

Extensions

Two incorrect terms (72 and 110) deleted by Colin Barker, Nov 29 2014
More terms from Colin Barker, Nov 30 2014

A305534 Index of the smallest prime in the n-Fibonacci sequence, or the Lucas U(n,-1) sequence.

Original entry on oeis.org

3, 2, 2, 3, 2, 3, 2, 5, 29, 3, 2, 5, 2, 3, 23, 3, 2, 7, 2, 3, 29, 19, 2, 3, 83, 3, 53, 19, 2, 5, 2, 5, 5, 5479, 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5
Offset: 1

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

Smallest k such that the k-th Fibonacci polynomial evaluated at x=n is prime. (The first few Fibonacci polynomials are 1, x, x^2 + 1, x^3 + 2*x, x^4 + 3*x^2 + 1, x^5 + 4*x^3 + 3*x, ...)
All terms are primes, since if a divides b, then the a-th term of the n-Fibonacci sequence also divides the b-th term of the n-Fibonacci sequence.
Corresponding primes are 2, 2, 3, 17, 5, 37, 7, 4289, 726120289954448054047428229, 101, 11, 21169, 13, 197, 82088569942721142820383601, 257, 17, 34539049, 19, 401, ...
a(n) = 2 if and only if n is prime.
a(n) = 3 if and only if n^2 + 1 is prime (A005574), except n=2 (since 2 is the only prime p such that p^2 + 1 is also prime).
a(34) > 1024, does a(n) exist for all n >= 1? (However, 17 is the only prime in the first 1024 terms of the 4-Fibonacci sequence, and it seems that 17 is the only prime in the 4-Fibonacci sequence.)
a(35)..a(48) = 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5, a(50)..a(54) = 11, 11, 23, 2, 3, a(56) = 3, a(58)..a(75) = 5, 2, 47, 2, 5, 311, 13, 233, 3, 2, 5, 11, 5, 2, 7, 2, 3, 5. Unknown terms a(34), a(49), a(55), a(57), exceed 1024, if they exist.
a(49) > 20000, if it exists. - Giovanni Resta, Jun 06 2018

Crossrefs

Cf. A001605, A096650, A209493, which are the indices of the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf. A005478, A086383, A201001, which are the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf. A000045, A000129, A006190, A001076, A052918, A005668, A054413, A041025, A099371, A041041, A049666, A041061 (the n-Fibonacci sequence for n = 1 to 12).
Cf. A302990 (for n-step Fibonacci sequence instead of n-Fibonacci sequence).

Programs

  • PARI
    b(n,k)=([n,1;1,0]^k)[1,2]
    a(n)=for(k=1,2^12,if(ispseudoprime(b(n,k)),return(k)))

Extensions

a(34)-a(48) from Giovanni Resta, Jun 06 2018

A331399 Numbers k such that A000129(k) and A001333(k) are both prime.

Original entry on oeis.org

2, 3, 5, 29, 59
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 16 2020

Keywords

Comments

This sequence is the intersection of A096650 and A099088.
The k-th square triangular number A001110(k) = (A000129(k)*A001333(k))^2 has exactly 9 divisors iff k is in this sequence, so if a(5) is the final term of this sequence, then there are only 5 triangular numbers that have exactly 9 divisors (cf. A331234).

Crossrefs

Cf. A001110 (numbers that are both triangular and square), A000129 (Pell numbers), A001333 (numerators of continued fraction convergents to sqrt(2); equivalently, prime companion Pell numbers, divided by 2), A096650 (indices of prime Pell numbers), A099088 (indices of prime companion Pell numbers, divided by 2), A331234 (triangular numbers having exactly 9 divisors).
Previous Showing 11-14 of 14 results.