cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal forms A096752. Antidiagonal sums form A096753. Row with index n lists the row sums of the n-th matrix power of triangle A096651, for n>=0.

Examples

			n-th row lists n-dimensional partitions; table begins with n=0:
  [1,1,1,1,1,1,1,1,1,1,1,1,...],
  [1,1,2,3,5,7,11,15,22,30,42,56,...],
  [1,1,3,6,13,24,48,86,160,282,500,859,...],
  [1,1,4,10,26,59,140,307,684,1464,3122,...],
  [1,1,5,15,45,120,326,835,2145,5345,...],
  [1,1,6,21,71,216,657,1907,5507,15522,...],
  [1,1,7,28,105,357,1197,3857,12300,38430,...],
  [1,1,8,36,148,554,2024,7134,24796,84625,...],
  [1,1,9,45,201,819,3231,12321,46209,170370,...],
  [1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
      k=0:  k=1:  k=2:  k=3:  k=4:  k=5:  k=6:  k=7:  k=8:
  n=0:  1     1     1     1     1     1     1     1     1
  n=1:  1     1     2     3     5     7    11    15    22
  n=2:  1     1     3     6    13    24    48    86   160
  n=3:  1     1     4    10    26    59   140   307   684
  n=4:  1     1     5    15    45   120   326   835  2145
  n=5:  1     1     6    21    71   216   657  1907  5507
  n=6:  1     1     7    28   105   357  1197  3857 12300
  n=7:  1     1     8    36   148   554  2024  7134 24796
  n=8:  1     1     9    45   201   819  3231 12321 46209
  n=9:  1     1    10    55   265  1165  4927 20155 80920
		

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.

Crossrefs

Rows: A000012 (n=0), A000041 (n=1), A000219 (n=2), A000293 (n=3), A000334 (n=4), A000390 (n=5), A000416 (n=6), A000427 (n=7), A179855 (n=8).
Columns: A008778 (k=4), A008779 (k=5), A042984 (k=6).
Cf. A096806.
Cf. A042984.

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)

Formula

T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.

A096752 Number of n-dimensional partitions of n.

Original entry on oeis.org

1, 1, 3, 10, 45, 216, 1197, 7134, 46209, 319555, 2350183, 18254380, 149117618, 1275857233, 11396595255
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal of A096751.

Crossrefs

Formula

a(n) = n-th row sums of A096651^n, with a(0)=1.

A179855 Number of 8-dimensional partitions of n.

Original entry on oeis.org

1, 9, 45, 201, 819, 3231, 12321, 46209, 170370, 621316, 2240838, 8011584, 28395213, 99845553, 348333411, 1205925033, 4142850423
Offset: 1

Views

Author

Suresh Govindarajan, Jan 11 2011

Keywords

Crossrefs

A096652 Lower triangular matrix T, read by rows, such that the row sums of T^n form the (2n)-dimensional partition numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 5, 2, 1, 0, 7, 7, 7, 2, 1, 0, 11, 16, 9, 9, 2, 1, 0, 15, 15, 31, 11, 11, 2, 1, 0, 22, 59, -4, 54, 13, 13, 2, 1, 0, 30, -109, 313, -72, 87, 15, 15, 2, 1, 0, 42, 1314, -1922, 1122, -225, 132, 17, 17, 2, 1, 0, 56, -11804, 19468, -9671, 3087, -509, 191, 19, 19, 2, 1, 0, 77, 133957, -217176, 110734, -32581
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

Row sums of T form A000219 (planar partitions); row sums of T^2 form A000334(4-D); row sums of T^3 form A000416(6-D).

Examples

			Triangle T begins:
{1},
{0,1},
{0,2,1},
{0,3,2,1},
{0,5,5,2,1},
{0,7,7,7,2,1},
{0,11,16,9,9,2,1},
{0,15,15,31,11,11,2,1},
{0,22,59,-4,54,13,13,2,1},
{0,30,-109,313,-72,87,15,15,2,1},
{0,42,1314,-1922,1122,-225,132,17,17,2,1},
{0,56,-11804,19468,-9671,3087,-509,191,19,19,2,1},
{0,77,133957,-217176,110734,-32581,7137,-980,266,21,21,2,1},
{0,101,-1728760,2809257,-1426436,422732,-87714,14601,-1704,359,23,23,2,1},...
Row sums are: {1,1,3,6,13,24,48,86,160,282,500,859,...} (A000219).
T^2 begins:
{1},
{0,1},
{0,4,1},
{0,10,4,1},
{0,26,14,4,1},
{0,59,38,18,4,1},
{0,140,109,50,22,4,1},
{0,307,256,179,62,26,4,1},
{0,684,709,370,273,74,30,4,1},
{0,1464,1240,1683,438,395,86,34,4,1},...
with row sums: {1,1,5,15,45,120,326,835,2145,5345,...} (A000334).
		

Crossrefs

Formula

Matrix square of triangle A096651.

A096653 Lower triangular matrix T, read by rows, such that the row sums of T^n form the (3n)-dimensional partition numbers.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 6, 3, 1, 0, 13, 9, 3, 1, 0, 24, 19, 12, 3, 1, 0, 48, 48, 25, 15, 3, 1, 0, 86, 84, 84, 31, 18, 3, 1, 0, 160, 228, 99, 135, 37, 21, 3, 1, 0, 282, 129, 721, 57, 204, 43, 24, 3, 1, 0, 500, 2521, -2267, 2087, -93, 294, 49, 27, 3, 1, 0, 859, -16291, 29876, -13253, 5229, -417, 408, 55, 30, 3, 1, 0, 1479, 199621, -317919
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

Row sums of T form A000293 (solid partitions); row sums of T^2 form A000416(6-D).

Examples

			Triangle T begins:
{1},
{0,1},
{0,3,1},
{0,6,3,1},
{0,13,9,3,1},
{0,24,19,12,3,1},
{0,48,48,25,15,3,1},
{0,86,84,84,31,18,3,1},
{0,160,228,99,135,37,21,3,1},
{0,282,129,721,57,204,43,24,3,1},
{0,500,2521,-2267,2087,-93,294,49,27,3,1},
{0,859,-16291,29876,-13253,5229,-417,408,55,30,3,1},
{0,1479,199621,-317919,165456,-46401,11539,-996,549,61,33,3,1},
{0,2485,-2547804,4150781,-2100853,627628,-126896,23006,-1926,720,67,36,3,1},...
Row sums are: {1,1,4,10,26,59,140,307,684,1464,3122,6500,...} (A000293).
T^2 begins:
{1},
{0,1},
{0,6,1},
{0,21,6,1},
{0,71,27,6,1},
{0,216,101,33,6,1},
{0,657,363,131,39,6,1},
{0,1907,1185,552,161,45,6,1},
{0,5507,3931,1824,789,191,51,6,1},
{0,15522,11574,7449,2520,1080,221,57,6,1},...
with row sums: {1,1,7,28,105,357,1197,3857,12300,38430,...} (A000416).
		

Crossrefs

Formula

Matrix cube of triangle A096651.

A096799 Triangle, read by rows, where T(n,k) = (k/n)*Sum_{d|n} A096800(d,k).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, -2, 3, 0, 1, 1, 1, -2, 4, 0, 1, 1, -8, 12, -4, 5, 0, 1, 1, 23, -51, 25, -5, 6, 0, 1, 1, -164, 361, -192, 50, -6, 7, 0, 1, 1, 1255, -2856, 1630, -484, 87, -7, 8, 0, 1, 1, -12108, 27795, -16292, 5065, -1026, 140, -8, 9, 0, 1, 1, 136061, -315068, 188665, -60125, 12604, -1925, 212, -9, 10, 0, 1
Offset: 1

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Comments

Triangle A096800 lists row polynomials P_n(y), that satisfy the g.f.: A096651(x,y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], with P_n(0)=0 for n>=1; the row sums of A096651^n form the n-dimensional partitions.

Examples

			Rows begin:
[1],
[1,1],
[1,0,1],
[1,1,0,1],
[1,-2,3,0,1],
[1,1,-2,4,0,1],
[1,-8,12,-4,5,0,1],
[1,23,-51,25,-5,6,0,1],
[1,-164,361,-192,50,-6,7,0,1],
[1,1255,-2856,1630,-484,87,-7,8,0,1],
[1,-12108,27795,-16292,5065,-1026,140,-8,9,0,1],
[1,136061,-315068,188665,-60125,12604,-1925,212,-9,10,0,1],
[1,-1756686,4093515,-2490800,809665,-173358,27146,-3312,306,-10,11,0,1],...
		

Crossrefs

A096876 Row sums of the triangle A096875, which transforms n-dimensional partitions into (n-2)-dimensional partitions.

Original entry on oeis.org

1, 1, -1, 0, 1, -1, -1, 3, 4, -17, -27, 118, 267, -917, -3409
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Crossrefs

Previous Showing 11-17 of 17 results.