cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A137490 Numbers with 27 divisors.

Original entry on oeis.org

900, 1764, 2304, 4356, 4900, 6084, 6400, 10404, 11025, 12100, 12544, 12996, 16900, 19044, 23716, 26244, 27225, 28900, 30276, 30976, 33124, 34596, 36100, 38025, 43264, 49284, 52900, 53361, 56644, 60516, 65025, 66564, 70756, 73984, 74529
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^26 (subset of A089081), p^2*q^2*r^2 (like 900, 1764, 4356, squares of A007304) or p^2*q^8 (like 2304, 6400, subset of the squares of A030628) where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 27.
Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 + P(2)*P(8) - P(10) + P(26) = 0.00453941..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A185445 Smallest number having exactly t divisors, where t is the n-th triprime (A014612).

Original entry on oeis.org

24, 60, 180, 240, 900, 960, 720, 2880, 15360, 3600, 6480, 61440, 14400, 46080, 983040, 25920, 32400, 3932160, 184320, 62914560, 233280, 230400, 2949120, 129600, 414720, 11796480, 4026531840, 921600, 16106127360, 810000, 1658880, 188743680, 1166400, 1030792151040, 14745600, 3732480
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2011

Keywords

Comments

This is the 3rd row of an infinite array A[k,n] = smallest number having exactly j divisors where j is the n-th natural number with exactly k prime factors (with multiplicity).
The first row is A061286, the second row is A096932.

Examples

			a(10) is 3600 because the 10th triprime is 45, and the smallest number with exactly 45 factors is 3600 = 2^4 * 3^2 * 5^2.
a(20) is 62914560 because the 10th triprime is 92, and the smallest number with exactly 92 factors is 62914560 = 2^22 * 3 * 5.
		

Crossrefs

Programs

  • Python
    from math import isqrt, prod
    from sympy import isprime, primepi, primerange, integer_nthroot, prime, divisors
    def A185445(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(n) = A005179(A014612(n)).
Previous Showing 11-12 of 12 results.