cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A166867 a(n) = Pell(n+3) - Jacobsthal(n+4).

Original entry on oeis.org

0, 1, 8, 27, 84, 237, 644, 1695, 4376, 11129, 28000, 69859, 173180, 427141, 1049308, 2569447, 6275584, 15295377, 37215864, 90426155, 219466276, 532154909, 1289368500, 3122076719, 7555891560, 18278599081, 44202568208, 106862692467
Offset: 0

Views

Author

Paul Barry, Oct 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 1, -5, -2}, {0, 1, 8, 27}, 50] (* G. C. Greubel, May 25 2016 *)

Formula

G.f.: x(1+5x+2x^2)/((1-x-2x^2)(1-2x-x^2)).
a(n) = A166868(n) + A097076(n+1) - A000129(n+2).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - 2*a(n-4). - G. C. Greubel, May 25 2016

A358715 a(n) is the number of distinct ways to cut an equilateral triangle with edges of size n into equilateral triangles with integer sides.

Original entry on oeis.org

1, 2, 5, 26, 220, 3622, 105859, 5677789, 553715341, 98404068313, 31850967186980, 18779046566454536, 20167518569123722322, 39451359692134386945019
Offset: 1

Views

Author

Craig Knecht and John Mason, Nov 28 2022

Keywords

Comments

In other words, the number of equilateral triangular tilings of an equilateral triangle, where rotations and reflections are considered distinct.

Examples

			a(3)=5 because of:
    /\      /\      /\      /\      /\
   /  \    /\/\    /  \    /\/\    /\/\
  /    \  /  \/\  /\/\/\  /\/  \  /\/\/\
		

Crossrefs

Extensions

a(10)-a(14) from Walter Trump, Dec 03 2022

A137199 a(n)=a(n-1)+3a(n-2)+a(n-3).

Original entry on oeis.org

1, 1, 1, 5, 9, 25, 57, 141, 337, 817, 1969, 4757, 11481, 27721, 66921, 161565, 390049, 941665, 2273377, 5488421, 13250217, 31988857, 77227929, 186444717, 450117361, 1086679441, 2623476241, 6333631925, 15290740089, 36915112105, 89120964297
Offset: 0

Views

Author

Paul Curtz, Mar 04 2008

Keywords

Crossrefs

Cf. A097076.

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{1,1,1},40] (* Harvey P. Dale, Feb 27 2020 *)

Formula

O.g.f.: (-1+3*x^2)/{(1+x)(x^2+2*x-1)} . a(n) = (-1)^(n+1)+2*A000129(n-1) if n>=1. - R. J. Mathar, Mar 17 2008
Previous Showing 11-13 of 13 results.