cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A369123 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2+x^2) ).

Original entry on oeis.org

1, 2, 6, 20, 68, 224, 672, 1584, 880, -22880, -215072, -1414400, -8012032, -41344000, -198120448, -884348160, -3640426752, -13403384320, -40424947200, -65476561920, 329862128640, 4603911045120, 35276325027840, 221747978649600, 1244854463643648
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2+x^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(3*n+1, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(3*n+1,n-2*k).

A059491 Expansion of generating function A_{QT}^(1)(4n;3).

Original entry on oeis.org

1, 1, 6, 189, 30618, 25332021, 106698472452, 2283997201168644, 248218139523497121576, 136861610819571430116630660, 382684747771430768732371981946100, 5424628155237728987530088501811168904125, 389729317367139375014273384868937660572301897500
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Programs

  • Mathematica
    f[n_] := Product[(3 k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[3^(n*(n - 1)/2)*f[n], {n,0,20}] (* G. C. Greubel, Sep 10 2017 *)

Formula

a(n) = 3^(n*(n-1)/2)*A005130(n).
a(n+1) is the Hankel transform of A097188. Odd terms occur in a(n+1) at positions given by 2*A000975(n). - Paul Barry, Feb 09 2007

A097187 Antidiagonal sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n>=0.

Original entry on oeis.org

1, 1, 7, 10, 58, 94, 499, 868, 4360, 7951, 38407, 72508, 339997, 659380, 3019639, 5984968, 26880052, 54249628, 239683171, 491235070, 2139947788, 4444675456, 19125212575, 40190140696, 171064560433, 363227946394, 1531088393647
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3)) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series(3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), x, n+2), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    a(n)=polcoeff(3*x/((1-9*x^2)+(3*x-1)*(1-9*x^2+x^2*O(x^n))^(2/3)), n,x)
    
  • Sage
    def A097187_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P(3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3))).list()
    A097187_list(30) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = 3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3)).
G.f.: A(x) = A004988(x^2)/(1 - x*A097188(x^2)).
Previous Showing 11-13 of 13 results.