cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A383405 Partial sums of the sum of the divisors of the numbers of the form 6*k + 5, k >= 0.

Original entry on oeis.org

6, 18, 36, 60, 90, 138, 180, 228, 282, 342, 426, 498, 594, 678, 768, 888, 990, 1098, 1212, 1356, 1512, 1644, 1782, 1950, 2100, 2292, 2484, 2652, 2826, 3006, 3234, 3426, 3624, 3864, 4104, 4368, 4620, 4848, 5082, 5322, 5664, 5916, 6174, 6438, 6708, 7080, 7362, 7698, 7992, 8328, 8700, 9012, 9330, 9690, 10074
Offset: 0

Views

Author

Omar E. Pol, Apr 25 2025

Keywords

Comments

Consider a spiral similar to the spiral described in A239660 but instead of having four quadrants on the square grid the new spiral has six wedges on the triangular grid. A "diamond" formed by two adjacent triangles has area 1. a(n) is the total number of diamonds (or the total area) in the fifth wedge after n + 1 turns. The interesting fact is that for n >> 1 the geometric pattern in the fifth wedge of the spiral is very similar to the geometric pattern of the first wedge but it is different from the other wedges. Also the geometric pattern in the second wedge is very similar to the geometric pattern of the fourth wedge. Note that the six wedge spiral shows more and better geometric patterns than the four quadrants spiral.
The graph named W5 in the Plot 6 of the Links section is very close to the graph of A363161 (W1) and far from the graph of A365446 (W6).

Crossrefs

Sequences of the same family are A363161, A365442, A383403, A365444, this sequence, A365446.

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[1, 6 # + 5] &, 55, 0] (* Michael De Vlieger, Apr 25 2025 *)
  • PARI
    a(n) = sum(k=0, n, sigma(6*k+5)); \\ Michel Marcus, Apr 25 2025

Formula

a(n) = 6*Sum_{k=0..n} A098098(k).
a(n) = (Pi^2/3) * n^2 + O(n*log(n)). - Amiram Eldar, Apr 25 2025

A232343 Expansion of q^(-5/3) * c(q^2)^3 / (9 * c(q)) in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, 2, 0, 3, -2, 4, 0, 5, -5, 8, 0, 7, -4, 8, 0, 9, -8, 10, 0, 14, -6, 12, 0, 16, -14, 14, 0, 15, -8, 20, 0, 17, -14, 18, 0, 19, -10, 24, 0, 26, -21, 22, 0, 23, -16, 28, 0, 25, -20, 32, 0, 32, -14, 28, 0, 29, -28, 30, 0, 38, -16, 32, 0, 33, -31, 40, 0, 40
Offset: 0

Views

Author

Michael Somos, Nov 22 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - x + 2*x^2 + 3*x^4 - 2*x^5 + 4*x^6 + 5*x^8 - 5*x^9 + 8*x^10 + ...
G.f. = q^5 - q^8 + 2*q^11 + 3*q^17 - 2*q^20 + 4*q^23 + 5*q^29 - 5*q^32 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(18), 2), 210) [6]; /* Michael Somos, Jul 09 2018 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^6]^9 / (QPochhammer[ x^2] QPochhammer[ x^3])^3, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^3] QPochhammer[ x^12])^3 / (QPochhammer[ -x] QPochhammer[ x^4]), {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 2, 2 - 2^#2,# == 3, 1, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[3 n + 5]) / 6]; (* Michael Somos, Jul 09 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^9 / (eta(x^2 + A) * eta(x^3 + A))^3, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 5; A = factor(n); 1/6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 2 - 2^e, p==3, 0, (p^(e+1) - 1) / (p - 1))))};
    

Formula

Expansion of q^(-5/3) * eta(q) * eta(q^6)^9 / (eta(q^2) * eta(q^3))^3 in powers of q.
Euler transform of period 6 sequence [-1, 2, 2, 2, -1, -4, ...].
a(n) = 1/6 * b(3*n + 5) where b() is multiplicative with b(2^e) = 2 - 2^e, b(3^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(2*n) = A098098(n). a(4*n + 1) = - A033686(n). a(4*n + 3) = 0.

A232356 Expansion of 2/9 * c(q) * c(q^2) - q * (psi(q) * psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function and c(q) is a cubic AGM theta function.

Original entry on oeis.org

1, 0, 5, -2, 6, 4, 8, -6, 17, 0, 12, 2, 14, 0, 30, -14, 18, 16, 20, -12, 40, 0, 24, -2, 31, 0, 53, -16, 30, 24, 32, -30, 60, 0, 48, 14, 38, 0, 70, -36, 42, 32, 44, -24, 102, 0, 48, -10, 57, 0, 90, -28, 54, 52, 72, -48, 100, 0, 60, 12, 62, 0, 136, -62, 84, 48
Offset: 1

Views

Author

Michael Somos, Nov 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 5*q^3 - 2*q^4 + 6*q^5 + 4*q^6 + 8*q^7 - 6*q^8 + 17*q^9 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(6), 2), 70) [2];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d ( 2 Mod[ d, 2] Boole[Mod[ n/d, 3] > 0] - Mod[ n/d, 2] Boole[ Mod[d, 3] > 0]), {d, Divisors @n}]];
    a[ n_] := SeriesCoefficient[ 2 q (QPochhammer[ q^3] QPochhammer[ q^6])^3 / (QPochhammer[ q] QPochhammer[ q^2]) - q (QPochhammer[ q^2] QPochhammer[ q^6])^4 / (QPochhammer[ q] QPochhammer[ q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A=x*O(x^n); polcoeff( 2 * (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)) - (eta(x^2 + A) * eta(x^6 + A))^4 / (eta(x + A) * eta(x^3 + A))^2, n))};
    
  • Sage
    ModularForms( Gamma0(6), 2, prec=70).1;
    

Formula

a(n) = 2 * A121443(n) - A111932(n). a(2*n) = -2 * A229615(n). a(12*n + 2) = a(12*n + 10) = 0.
a(n) = A123532(n) + 7 * A229615(n). a(3*n + 2) = 6 * A232343(n-1). a(6*n + 5) = 6 * A098098(n). a(12*n + 4) = -2 * A144614(n). a(12*n + 6) = 4 * A008438(n). a(12*n + 8) = -6 * A033686(n). - Michael Somos, May 23 2014

A295012 a(n) = sigma(12n - 1)/12, where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 2, 4, 4, 5, 6, 7, 10, 9, 12, 11, 14, 16, 14, 15, 16, 20, 22, 19, 20, 21, 22, 31, 28, 28, 26, 30, 34, 29, 30, 36, 32, 40, 38, 35, 36, 37, 56, 39, 40, 41, 42, 52, 48, 57, 50, 47, 62, 49, 50, 56, 60, 64, 54, 55, 62, 57, 70, 68, 60, 66, 62, 76, 70, 70, 76
Offset: 1

Views

Author

M. F. Hasler, Dec 08 2017

Keywords

Comments

Robert G. Wilson v observes in A280098 that {1, 3, 4, 6, 8, 12, 24} seem to be the only positive integers k such that sigma(kn-1)/k is an integer for all n > 0.

Crossrefs

Cf. A280098 (analog for k = 24), A097723 (analog for k = 4), A033686 (analog for k = 3), A000203 (sigma, also the analog for k = 1).
The analog for k = 8 is A258835, up to the offset.
The analog for k = 6 is A098098 (up to the offset), a signed variant of this and the preceding one is A258831.
Cf. A086463.

Programs

  • GAP
    sequence := List([1..10^5], n-> Sigma(12 *n-1)/12); # Muniru A Asiru, Dec 28 2017
  • Maple
    with(numtheory):
    seq(sigma(12*n-1)/12, n=1..10^3); # Muniru A Asiru, Dec 28 2017
  • Mathematica
    Array[DivisorSigma[1, 12 # - 1]/12 &, 66] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    vector(90,n,sigma(12*n-1)/12)
    

Formula

Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024

A321528 Expansion of b(x)^2 * b(x^2) / b(x^4) where b is a cubic AGM theta function.

Original entry on oeis.org

1, -6, 6, 30, -66, -36, 186, -48, -210, 138, 36, -72, 114, -84, 48, 180, -498, -108, 726, -120, -396, 240, 72, -144, -30, -186, 84, 462, -528, -180, 1116, -192, -1074, 360, 108, -288, 654, -228, 120, 420, -1260, -252, 1488, -264, -792, 828, 144, -288, -318
Offset: 0

Views

Author

Michael Somos, Nov 12 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 64 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = 1 - 6*x + 6*x^2 + 30*x^3 - 66*x^4 - 36*x^5 + 186*x^6 - 48*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 49); A[1] - 6*A[2] + 6*A[3] + 30*A[4] - 66*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^2])^3 / ( EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^6]), {x, 0, n}];
    a[ n_] := With[ {s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, Boole[n==0], -6 (s[n/1] - 4 s[n/2] - 9 s[n/3] + 16 s[n/4])]];
    a[ n_] := If[ n < 1, Boole[n==0], -6 Sum[ d {1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0}[[Mod[d, 12, 1]]], {d, Divisors[n]}]];
  • PARI
    {a(n) = if( n<1, n==0, -6 * sumdiv( n, d, d * [0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1][d%12 + 1]))};
    
  • PARI
    {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, n==0, -6 * (s(n/1) - 4*s(n/2) - 9*s(n/3) + 16*s(n/4)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6 * eta(x^2 + A)^3 * eta(x^12 + A) / (eta(x^3 + A)^2 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
    

Formula

Expansion of phi(-x) * phi(-x^2)^3 / (phi(-x^3) * phi(-x^6)) in powers of x where phi() is a Ramanujan theta function.
Expansion of eta(q)^6 * eta(q^2)^3 * eta(q^12) / (eta(q^3)^2 * eta(q^4)^3 * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 864 (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321527.
a(n) = -6 * (s(n/1) - 4*s(n/2) - 9*s(n/3) + 16*s(n/4)) if n>0, where s(x) = sum of divisors of x for integer x else 0.
a(2*n + 1) = -6 * A134077(n). a(6*n + 5) = -a(12*n + 10) = -36 * A098098(n).

A329651 Expansion of x * (psi(x^6) / psi(-x^3))^3 * phi(-x)^5 / psi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

0, 1, -9, 31, -45, 6, 45, 8, -117, 121, -54, 12, 9, 14, -72, 186, -261, 18, 207, 20, -270, 248, -108, 24, -63, 31, -126, 391, -360, 30, 270, 32, -549, 372, -162, 48, 171, 38, -180, 434, -702, 42, 360, 44, -540, 726, -216, 48, -207, 57, -279, 558, -630, 54, 693
Offset: 0

Views

Author

Michael Somos, Nov 18 2019

Keywords

Comments

Number 105 of the 126 eta-quotients listed in Table 1 of Williams 2012.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 144 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A328788.

Examples

			G.f. = x - 9*x^2 + 31*x^3 - 45*x^4 + 6*x^5 + 45*x^6 + 8*x^7 - 117*x^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 52); A[2] - 9*A[3] + 31*A[4] - 45*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/2 (EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, Pi/4, x^(3/2)])^3 EllipticTheta[ 4, 0, x]^5 / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}] // PowerExpand;
  • PARI
    {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, 0, s(n) - 12*s(n/2) + 27*s(n/3) - 16*s(n/4))};
    
  • PARI
    {a(n) = my(A); if( n < 1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^9 * eta(x^12 + A)^3 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^4 + A)), n))};
    

Formula

Euler transform of period 12 sequence [-9, -5, -6, -4, -9, -2, -9, -4, -6, -5, -9, -4, ...].
Expansion of x * phi(-x)^5 / psi(-x) * (f(-x^12) / f(-x^3))^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of eta(q)^9 * eta(q^12)^3 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^4)) in powers of q.
a(n) = s(n) - 12*s(n/2) + 27*s(n/3) - 16*s(n/4) if n>0 where s(x) = sum of divisors of x for integer x else 0.
a(n) = -(-1)^n * A133739(n). a(4*n + 2) = -9 * A134077(n). a(6*n + 5) = 6 * A098098(n).

A365412 a(n) = sigma(6*n+2). Sum of the divisors of 6*n+2, n >= 0.

Original entry on oeis.org

3, 15, 24, 42, 42, 63, 60, 84, 93, 120, 96, 126, 114, 186, 132, 168, 171, 210, 216, 210, 186, 255, 204, 336, 222, 300, 240, 294, 324, 372, 336, 336, 294, 465, 312, 378, 330, 504, 432, 420, 399, 480, 384, 588, 480, 558, 420, 504, 540, 570, 456, 672, 474, 762, 492, 588, 549, 660, 744
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2023

Keywords

Comments

Consider a spiral similar to the spiral described in A239660 but instead of having four quadrants on the square grid the new spiral has six wedges on the triangular grid. A "diamond" formed by two adjacent triangles has area 1. a(n) is the number of diamonds (or the area) added in the second wedge after n turns. The interesting fact is that for n >> 1 the geometric pattern in the second wedge of the spiral is similar to the geometric pattern of the fourth wedge but it is different from the other wedges.

Crossrefs

Other members of the same family are A363031 and A224613. Also 6*A098098.
Partial sums give A365442.

Programs

  • Mathematica
    Table[DivisorSigma[1, 6*n + 2], {n, 0, 60}] (* Amiram Eldar, Sep 09 2023 *)

Formula

a(n) = A000203(6*n+2).
a(n) = A000203(A016933(n)).

A365414 a(n) = sigma(6*n+4). Sum of the divisors of 6*n+4, n >= 0.

Original entry on oeis.org

7, 18, 31, 36, 56, 54, 90, 72, 98, 90, 127, 144, 140, 126, 180, 144, 217, 162, 248, 180, 224, 252, 270, 216, 266, 288, 378, 252, 308, 270, 360, 360, 399, 306, 434, 324, 504, 342, 450, 432, 434, 468, 511, 396, 476, 414, 720, 504, 518, 450, 620, 576, 560, 576, 630, 504, 756, 522, 756, 540
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2023

Keywords

Comments

Consider a spiral similar to the spiral described in A239660 but instead of having four quadrants on the square grid the new spiral has six wedges on the triangular grid. A "diamond" formed by two adjacent triangles has area 1. a(n) is the number of diamonds (or the area) added in the fourth wedge after n turns. The interesting fact is that for n >> 1 the geometric pattern in the fourth wedge of the spiral is similar to the geometric pattern of the second wedge but it is different from the other wedges.

Crossrefs

Partial sums give A365444.
Other members of the same family are A363031 and A224613. Also 6*A098098.

Programs

  • Mathematica
    Table[DivisorSigma[1, 6*n + 4], {n, 0, 60}] (* Amiram Eldar, Sep 09 2023 *)
  • PARI
    a(n) = sigma(6*n+4); \\ Michel Marcus, Sep 08 2023

Formula

a(n) = A000203(6*n+4).
a(n) = A000203(A016957(n)).
Previous Showing 11-18 of 18 results.