cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 215 results. Next

A251541 Index of first term in A098550 that is divisible by the n-th prime.

Original entry on oeis.org

2, 3, 7, 8, 20, 21, 28, 41, 49, 59, 60, 77, 85, 86, 99, 112, 125, 130, 140, 151, 156, 165, 173, 192, 202, 213, 220, 231, 236, 245, 272, 281, 294, 299, 322, 327, 336, 353, 362, 373, 384, 391, 412, 421, 428, 433, 450, 477, 488, 495, 504, 521, 526, 539, 548, 569, 580, 587
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2014

Keywords

Comments

It is known that every prime divides some term of A098550, so the sequence exists.
Conjectures. 1: Equals first column of A251716. 2: For n > 4, a(n) = A251239(n) - 2. - Reinhard Zumkeller, Dec 15 2014

Crossrefs

A251549 a(n) = smallest odd number not in {A098550(1), A098550(2), ..., A098550(n)}.

Original entry on oeis.org

3, 3, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29
Offset: 1

Views

Author

N. J. A. Sloane, Dec 18 2014

Keywords

Comments

A251416(n) = Min{A251546(n), a(n)}. - Reinhard Zumkeller, Dec 19 2014

Crossrefs

Programs

  • Haskell
    import Data.List ((\\))
    a251549 n = head $ [1, 3 ..] \\ filter odd (take n a098550_list)
    -- Reinhard Zumkeller, Dec 19 2014
  • Mathematica
    terms = 100;
    f[lst_List] := Block[{k=4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, terms-3];
    a[1] = 3;
    a[n_] := a[n] = For[k = a[n-1], True, k = k+2, If[FreeQ[A098550[[1 ;; n]], k], Return[k]]];
    Array[a, terms] (* Jean-François Alcover, Aug 02 2018, after Robert G. Wilson v *)

A251637 Square array read by antidiagonals containing in row n the multiples of prime(n) in A098550 in order of appearance.

Original entry on oeis.org

2, 3, 4, 15, 9, 8, 14, 5, 15, 14, 22, 35, 25, 6, 6, 39, 11, 7, 35, 12, 12, 51, 13, 33, 21, 10, 21, 16, 38, 17, 26, 55, 28, 20, 27, 10, 69, 19, 85, 65, 44, 91, 45, 39, 20, 87, 23, 95, 34, 91, 99, 49, 85, 33, 22, 62, 29, 115, 57, 68, 52, 77, 63, 55, 45, 26, 74
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 07 2014

Keywords

Comments

T(n,k) = A251715(n,k)*A000040(n); A251715(n,k) = T(n,k)/A000040(n);
T(n,k) = A098550(A251716(n,k)); A251716(n,k) = A098551(T(n,k));
T(n,1) = A251618(n); for n > 4: T(n,2) = A000040(n);
conjecture: A098550 is a permutation of the positive integers iff A001221(n) = number of rows containing n.
A251541 = first column, and A251544 = third column for row numbers > 4. - Reinhard Zumkeller, Dec 16 2014

Examples

			.   n   p |  first 14 multiples of p = prime(n) in A098550, n = 1..25
.  -------+-------------------------------------------------------------
.   1   2 |   2  4   8  14   6  12  16  10   20  22   26   28   32   18
.   2   3 |   3  9  15   6  12  21  27  39   33  45   51   18   24   36
.   3   5 |  15  5  25  35  10  20  45  85   55  65   30   95   40   50
.   4   7 |  14 35   7  21  28  91  49  63   42  56   77  119  133  161
.   5  11 |  22 11  33  55  44  99  77  66   88 165  143  121  187  110
.   6  13 |  39 13  26  65  91  52 117  78  104 195  143  130  156  221
.   7  17 |  51 17  85  34  68 119 153 102  187 136  170  255  221  204
.   8  19 |  38 19  95  57 133  76 171 114  152 209  247  190  285  228
.   9  23 |  69 23 115  46 161  92 138 207  184 253  299  345  230  276
.  10  29 |  87 29  58 145 203 116 174 261  232 319  377  290  435  348
.  11  31 |  62 31  93 155 124 217 279 186  341 403  248  465  310  372
.  12  37 |  74 37 111 185 148 259 222 333  296 407  555  370  629  481
.  13  41 | 123 41  82 205 164 287 246 369  451 328  410  533  615  492
.  14  43 |  86 43 129 215 172 301 387 258  473 344  430  645  559  516
.  15  47 |  94 47 329 141 235 188 282 423  517 376  470  611  705  564
.  16  53 | 106 53 265 159 212 371 318 477  424 583  689  530  795  636
.  17  59 | 118 59 177 295 236 413 354 531  649 472  767  590  885 1003
.  18  61 | 122 61 427 183 305 244 366 549  671 488  793  610  915  732
.  19  67 | 201 67 335 134 268 469 603 402  536 737  871  670 1005  804
.  20  71 | 142 71 213 355 284 497 426 639  568 781  710 1065  923  852
.  21  73 | 146 73 365 219 292 511 438 657  584 803  730  949 1095  876
.  22  79 | 158 79 237 395 316 553 474 711  632 869 1027  790 1185  948
.  23  83 | 249 83 581 166 415 332 498 747  913 664 1079  830 1245  996
.  24  89 | 178 89 267 445 356 623 534 801  712 979 1157  890 1335 1068
.  25  97 | 291 97 679 194 485 388 582 873 1067 776  970 1261 1455 1164 .
.  ---------------------------------------------------------------------
See also A251715 for a table with T(n,k)/p and A251716 for a table of indices of T(n,k) within A098550.
		

Crossrefs

Cf. A098550, A000040, A251618 (first column), A001221, A251715, A251716.

Programs

  • Haskell
    when seen as table read by rows:
    a251637 n k = a251637_tabl !! (n-1) !! (k-1)
    a251637_row n= a251637_tabl !! (n-1)
    a251637_tabl = adias $ map
       (\k -> filter
         ((== 0) . flip mod (fromInteger $ a000040 k)) a098550_list) [1..]
  • Mathematica
    rows = 25; (* f = A098550 *) Clear[f, row]; f[n_ /; n <= 3] := n; f[n_] := f[n] = Module[{k}, For[k=4, GCD[f[n-2], k] == 1 || GCD[f[n-1], k]>1 || MemberQ[Array[f, n-1], k], k++]; k]; row[n_] := row[n] = Module[{k, cnt}, Reap[For[k=1; cnt=0, cnt <= rows-n, k++, If[Divisible[f[k], Prime[n]], cnt++; Sow[f[k]]]]][[2, 1]]]; A251637 = Table[row[n-k+1][[k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 17 2014 *)

A251716 Array of positions of A251637(n,k) in A098550.

Original entry on oeis.org

2, 3, 4, 7, 5, 6, 8, 9, 7, 8, 20, 13, 11, 10, 10, 21, 22, 15, 13, 12, 12, 28, 23, 24, 17, 16, 17, 14, 41, 30, 25, 34, 27, 18, 19, 16, 49, 43, 32, 36, 46, 38, 26, 21, 18, 59, 51, 45, 35, 38, 66, 40, 32, 24, 20, 60, 61, 53, 47, 67, 54, 68, 42, 34, 26, 25, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2014

Keywords

Comments

T(n,k) = A098551(A251637(n,k));
A251637(n,k) = A098550(T(n,k));
T(n,k+1) > T(n,k) + 1, according definition of A098550;
conjecture: A098550 is a permutation of the positive integers iff all integers > 1 occur exactly once.

Examples

			.   n   p |  Indices of A251637(n,k) in A098550, n = 1..25, k= 1..14
.  -------+-------------------------------------------------------------
.   1   2 |   2   4   6   8  10  12  14  16  18  20   25   27   29   31
.   2   3 |   3   5   7  10  12  17  19  21  24  26   28   31   33   37
.   3   5 |   7   9  11  13  16  18  26  32  34  36   39   45   48   50
.   4   7 |   8  13  15  17  27  38  40  42  44  58   68   70   72   74
.   5  11 |  20  22  24  34  46  66  68  73  91 100  122  124  126  128
.   6  13 |  21  23  25  36  38  54  83  95 108 120  122  139  178  185
.   7  17 |  28  30  32  35  67  70 111 115 126 141  174  183  185  218
.   8  19 |  41  43  45  47  72  82 113 123 163 166  189  201  221  248
.   9  23 |  49  51  53  56  74  93 149 157 197 228  230  244  252  304
.  10  29 |  59  61  63  96 105 121 188 198 250 259  265  314  323  387
.  11  31 |  60  62  64  98 135 179 200 207 261 263  268  335  343  402
.  12  37 |  77  79  81 118 161 193 241 253 320 348  392  400  411  413
.  13  41 |  85  87  89 146 172 208 266 278 350 358  442  451  478  553
.  14  43 |  86  88  90 148 184 210 280 286 352 369  459  487  489  561
.  15  47 |  99 101 103 109 150 199 306 344 403 406  509  516  538  616
.  16  53 | 112 114 116 131 227 295 349 381 455 470  518  574  610  704
.  17  59 | 125 127 129 219 254 305 389 439 472 511  626  640  697  717
.  18  61 | 130 132 134 136 242 258 396 445 474 531  628  654  726  795
.  19  67 | 140 142 144 147 292 307 458 463 576 581  630  740  772  871
.  20  71 | 151 153 155 287 308 397 469 501 623 636  775  815  837  932
.  21  73 | 156 158 160 162 316 399 480 532 633 686  801  839  865  952
.  22  79 | 165 167 169 289 341 418 515 545 687 690  841  855  917 1033
.  23  83 | 173 175 177 182 321 360 555 577 711 723  843  898  988 1083
.  24  89 | 192 194 196 333 382 512 585 641 771 800  933  972 1075 1155
.  25  97 | 202 204 206 211 370 426 631 695 802 844 1052 1092 1177 1266
.  ---------------------------------------------------------------------
See table A251637 for A098550(T(n,k)).
		

Crossrefs

Cf. A098550, A098551, A251637, A251237 (first row), A251553 (second row).
Cf. A251541 (first column).

Programs

  • Haskell
    seen as table read by rows:
    a251716 n k = a251716_tabl !! (n-1) !! (k-1)
    a251716_row n = a251716_tabl !! (n-1)
    a251716_tabl = map (map a098551) a251637_tabl

A251103 Largest prime factor of A098550(n).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 7, 5, 3, 5, 3, 7, 2, 7, 5, 7, 5, 3, 11, 13, 11, 13, 11, 13, 5, 7, 17, 2, 17, 3, 17, 3, 11, 17, 13, 3, 13, 5, 7, 19, 7, 19, 7, 19, 11, 19, 5, 23, 5, 23, 3, 23, 13, 5, 23, 3, 7, 29, 31, 29, 31, 29, 31, 2, 11, 17, 11, 3, 17, 5, 19, 11, 23
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2014

Keywords

Comments

a(n) = A006530(A098550(n)).

Crossrefs

Programs

  • Haskell
    a251103 = a006530 . fromIntegral . a098550

A251138 Number of distinct prime factors of A098550(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2014

Keywords

Comments

a(n) = A001221(A098550(n)).

Crossrefs

Programs

  • Haskell
    a251138 = a001221 . fromIntegral . a098550

A251140 Total number of prime factors of A098550(n).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 4, 1, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 2, 5, 1, 3, 2, 4, 2, 2, 2, 4, 2, 3, 2, 2, 3, 1, 3, 2, 3, 2, 4, 2, 3, 1, 5, 2, 3, 3, 2, 4, 4, 2, 2, 1, 1, 2, 2, 6, 3, 3, 2, 4, 2, 4, 2, 3, 2, 5, 3, 2, 3, 1, 3, 2, 3, 3, 5, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2014

Keywords

Comments

a(n) = A001222(A098550(n)).

Crossrefs

Programs

  • Haskell
    a251140 = a001222 . fromIntegral . a098550

A251240 Indices of squares of primes in A098550.

Original entry on oeis.org

4, 5, 11, 40, 124, 187, 273, 313, 505, 747, 751, 1280, 1478, 1563, 1841, 2386, 3130, 3134, 4196, 4493, 4497, 5455, 6002, 6877, 8158, 9047, 9276, 10190, 10194, 11157, 14182, 15086, 16762, 16766, 19758, 20051, 21749, 23435, 24601, 26398, 28655, 28659, 32636
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 02 2014

Keywords

Crossrefs

Subsequence of A251241.

Programs

  • Haskell
    a251240 n = a251240_list !! (n-1)
    a251240_list = filter ((== 2) . a062799 . fromIntegral . a098550) [1..]
    
  • Python
    from gmpy2 import gcd, is_square, is_prime, isqrt
    A251240_list, l1, l2, s, b = [], 3, 2, 4, {}
    for n in range(4,10**4):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
                l2, l1, b[i] = l1, i, 1
                while s in b:
                    b.pop(s)
                    s += 1
                if is_square(i) and is_prime(isqrt(i)):
                    A251240_list.append(n)
                break
            i += 1
    print(A251240_list) # Chai Wah Wu, Dec 06 2014

Formula

A098550(a(n)) = A001248(n).
A062799(A098550(a(n))) = 2.

A251393 Indices of powers of 2 in A098550.

Original entry on oeis.org

1, 2, 4, 6, 14, 29, 65, 137, 277, 546, 1109, 2208, 4391, 8746, 17404, 34662, 69036, 137604, 274385, 547278, 1091962, 2179171, 4349905, 8684545, 17341369, 34632301, 69172557, 138175535, 276039015, 551501773
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2014

Keywords

Crossrefs

Subsequence of A251241.

Programs

  • C
    // See Links section.
  • Haskell
    a251393 n = a251393_list !! (n-1)
    a251393_list = filter ((== 1) . a209229 . a098550) [1..]
    
  • Python
    from math import gcd
    A251393_list, l1, l2, s, p2, b = [1,2], 3, 2, 4, 4, {}
    for n in range(4,10**4):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
                l2, l1, b[i] = l1, i, 1
                while s in b:
                    b.pop(s)
                    s += 1
                if i == p2:
                    A251393_list.append(n)
                    p2 *= 2
                break
            i += 1 # Chai Wah Wu, Dec 03 2014
    

Formula

A098550(a(n)) = 2^(n-1).
A209229(A098550(a(n))) = 1.

Extensions

a(18)-a(19) from Chai Wah Wu, Dec 03 2014
a(20) from Chai Wah Wu, Dec 04 2014
a(21)-a(22) from Rémy Sigrist, Nov 08 2022
a(23)-a(30) from Jinyuan Wang, Jan 27 2025

A251557 a(n) = 2 more than the largest even number among {A098550(1), A098550(2), ..., A098550(n)}.

Original entry on oeis.org

2, 4, 4, 6, 6, 10, 10, 16, 16, 16, 16, 16, 16, 18, 18, 18, 18, 22, 22, 24, 24, 24, 24, 24, 28, 28, 30, 30, 34, 34, 34, 34, 34, 34, 36, 36, 38, 38, 38, 38, 40, 40, 40, 44, 44, 46, 46, 46, 46, 52, 52, 52, 52, 54, 54, 54, 54, 58, 58, 64, 64, 64, 64, 64, 66, 66, 70, 70, 70, 70, 70, 70, 70
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2014

Keywords

Crossrefs

Programs

  • Haskell
    a251557 n = a251557_list !! (n-1)
    a251557_list = map (+ 2) $ tail $ scanl maxEven 0 a098550_list
                   where maxEven u v = if even v then max u v else u
    -- Reinhard Zumkeller, Mar 10 2015
  • Mathematica
    terms = 100;
    f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, terms - 3];
    a[1] = 2; a[n_] := Max[Select[A098550[[1 ;; n]], EvenQ]] + 2;
    Array[a, terms] (* Jean-François Alcover, Aug 02 2018, after Robert G. Wilson v *)
Previous Showing 11-20 of 215 results. Next