cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A132773 a(n) = n*(n + 31).

Original entry on oeis.org

0, 32, 66, 102, 140, 180, 222, 266, 312, 360, 410, 462, 516, 572, 630, 690, 752, 816, 882, 950, 1020, 1092, 1166, 1242, 1320, 1400, 1482, 1566, 1652, 1740, 1830, 1922, 2016, 2112, 2210, 2310, 2412, 2516, 2622, 2730, 2840, 2952, 3066, 3182, 3300, 3420, 3542, 3666
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 2*x*(-16+15*x)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*A132758(n). - R. J. Mathar, Jul 22 2009
a(n) = 2*n + a(n-1) + 30, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(31)/31 = A001008(31)/A102928(31) = 290774257297357/2238255069850800, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/31 - 7313175618421/319750724264400. (End)
From Elmo R. Oliveira, Dec 13 2024: (Start)
E.g.f.: exp(x)*x*(32 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A349487 a(n) = A132739((n-5)*(n+5)).

Original entry on oeis.org

11, 24, 39, 56, 3, 96, 119, 144, 171, 8, 231, 264, 299, 336, 3, 416, 459, 504, 551, 24, 651, 704, 759, 816, 7, 936, 999, 1064, 1131, 48, 1271, 1344, 1419, 1496, 63, 1656, 1739, 1824, 1911, 16, 2091, 2184, 2279, 2376, 99, 2576, 2679, 2784, 2891, 24, 3111
Offset: 6

Views

Author

Simon Strandgaard, Nov 19 2021

Keywords

Comments

Shares 614 initial terms with A061043. First difference is A061043(620)=615 vs. a(620)=123.

Examples

			a(9)  = A132739(( 9-5)*( 9+5)) = A132739(56) = 56,
a(10) = A132739((10-5)*(10+5)) = A132739(75) = 3,
a(11) = A132739((11-5)*(11+5)) = A132739(96) = 96.
		

Crossrefs

Programs

  • Mathematica
    Table[Last@Select[Divisors[(n - 5)*(n + 5)], Mod[#, 5] != 0 &], {n, 6,
       56}] (* Giorgos Kalogeropoulos, Nov 19 2021 *)
    Table[(n - 5)*(n + 5)/5^IntegerExponent[(n - 5)*(n + 5), 5], {n, 6, 56}] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A132739(n)=n/5^valuation(n, 5);
    a(n) = A132739((n-5)*(n+5));
    [a(n)|n<-[6..25]]
    
  • Python
    def A349487(n):
        a, b = divmod(n*n-25, 5)
        while b == 0:
            a, b = divmod(a,5)
        return 5*a+b # Chai Wah Wu, Dec 05 2021
  • Ruby
    p (6..25).map { |n| x = (n-5)*(n+5); x /= 5 while (x % 5) == 0; x }
    

Formula

a(n) = A132739(A098603(n-5)).
Previous Showing 21-22 of 22 results.