cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A164733 Number of n-digit fixed points under the Kaprekar map A151949.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 2, 3, 1, 5, 1, 6, 2, 8, 2, 12, 3, 14, 5, 17, 7, 21, 8, 25, 12, 30, 14, 36, 17, 43, 21, 49, 25, 58, 31, 66, 36, 75, 43, 85, 49, 96, 58, 109, 66, 121, 75, 136, 86, 150, 96, 167, 109, 184, 121, 202, 136, 222, 150, 242, 167, 265, 185, 287, 202, 313, 222, 338
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Bisections: A309223, A309224.
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A165125 (base 9). [From Joseph Myers, Sep 05 2009]

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) + a(n-9) - a(n-11) + a(n-14) - a(n-15) - a(n-16) + a(n-17) - a(n-20) + a(n-22) - a(n-23) + a(n-25) + a(n-29) - a(n-31) for n > 33.
G.f.: x*(-x^32 + x^31 - x^29 + x^28 - x^27 + x^26 - x^24 + 2*x^23 - x^22 + x^21 + x^20 + 2*x^18 - x^17 + x^16 + 2*x^15 - 3*x^14 + 2*x^13 - x^12 + x^11 - x^9 + 2*x^8 - x^6 + x^5 - x^4 + x^3 + 1)/(x^31 - x^29 - x^25 + x^23 - x^22 + x^20 - x^17 + x^16 + x^15 - x^14 + x^11 - x^9 + x^8 - x^6 - x^2 + 1). (End)

A055162 The number n has digits in ascending order and n=a-b where a has the digits of n in descending order and b has the digits of n in another order (a and b perhaps with extra zeros), ordered by a.

Original entry on oeis.org

459, 1467, 445599, 134667, 13346667, 1245789, 123456789, 444555999, 1333466667, 123456789, 12457899, 12334566789, 133334666667, 12334566789, 1234567899, 124578999, 444455559999, 1233345666789
Offset: 1

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Comments

Each term of this sequence A055162(n) corresponds to A099009(n+1), with its digits being reordered in the ascending manner. - Alexander R. Povolotsky, Apr 26 2012
All terms of this sequence are divisible by nine, yielding 51, 163, 49511, 14963, 1482963,.... - Alexander R. Povolotsky, Apr 29 2012

Examples

			459 = 954 - 495.
		

References

  • Denis Borris, Ken Duisenberg's Puzzle of the Week, April 20, 2000

Crossrefs

Formula

a(n) = A055161(n) - A055160(n).

A164723 Numbers belonging to cycles of length 2 under the Kaprekar map A151949.

Original entry on oeis.org

53955, 59994, 8733209876622, 9665429654331, 873332098766622, 966543296654331, 8764421997755322, 8765431997654322, 87333320987666622, 96654332966654331, 8733333209876666622, 9665433329666654331
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164724 Least element of each cycle of length 2 under the Kaprekar map A151949.

Original entry on oeis.org

53955, 8733209876622, 873332098766622, 8764421997755322, 87333320987666622, 8733333209876666622, 873333332098766666622, 87333333320987666666622, 87764442219997775553222, 8733333333209876666666622
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164725 Numbers belonging to cycles of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

64308654, 83208762, 86526432, 6431088654, 6433086654, 6543086544, 8321088762, 8332087662, 8653266432, 8655264432, 8732087622, 8765264322, 9751088421, 9755084421, 9775084221, 643110888654, 643310886654, 643330866654
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164726 Least element of each cycle of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

64308654, 6431088654, 6433086654, 6543086544, 9751088421, 643110888654, 643310886654, 643330866654, 654310886544, 654330866544, 655430865444, 975110888421, 975310886421, 975510884421, 997510884201, 64311108888654
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164727 Numbers belonging to cycles of length 5 under the Kaprekar map A151949.

Original entry on oeis.org

86420987532, 86541975432, 87641975322, 88431976512, 96641975331, 8643209876532, 8654209875432, 8654319765432, 8764209875322, 8764319765322, 8765419754322, 8843209876512, 8843319766512, 8854319765412, 8874319765212
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164728 Least element of each cycle of length 5 under the Kaprekar map A151949.

Original entry on oeis.org

86420987532, 8643209876532, 8654209875432, 8764209875322, 864332098766532, 865432098765432, 876432098765322, 876542098754322, 885432098765412, 86433320987666532, 86543320987665432, 87643320987665322
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A055160 Numbers n with the property that n=a-b where a has the digits of n in descending order and b has the digits of n in ascending order (perhaps with leading zeros), ordered by a.

Original entry on oeis.org

495, 6174, 549945, 631764, 63317664, 97508421, 864197532, 554999445, 6333176664, 9753086421, 9975084201, 86431976532, 633331766664, 975330866421, 997530864201, 999750842001, 555499994445, 8643319766532
Offset: 1

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Comments

This sequence appears to differ from A099009 at the positions of two terms in it: 554999445 and 555499994445. - Alexander R. Povolotsky, May 01 2012

Examples

			495 = 954-459.
		

References

  • Denis Borris, Ken Duisenberg's Puzzle of the Week, April 20, 2000

Crossrefs

Formula

a(n) = A055161(n) - A055162(n).

A164729 Numbers belonging to cycles of length 7 under the Kaprekar map A151949.

Original entry on oeis.org

420876, 642654, 750843, 840852, 851742, 860832, 862632, 43208766, 64326654, 75308643, 84308652, 85317642, 86308632, 86326632, 4332087666, 6433266654, 7533086643, 8433086652, 8533176642, 8633086632, 8633266632, 433320876666
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Previous Showing 21-30 of 41 results. Next