A113867
a(n) = a(n-1) + 2^(A047258(n)) for n>1, a(1)=1.
Original entry on oeis.org
1, 17, 49, 113, 1137, 3185, 7281, 72817, 203889, 466033, 4660337, 13048945, 29826161, 298261617, 835132529, 1908874353, 19088743537, 53448481905, 122167958641, 1221679586417, 3420702841969, 7818749353073, 78187493530737
Offset: 1
-
CoefficientList[Series[(1 + 16 x + 32 x^2) / ((-1 + x) (- 1 + 4 x) (1 + 4 x + 16 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 20 2013 *)
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113870
a(n) = a(n-1) + 2^(k(n)), where k(n) is the n-th term of the sequence formed by k(1)=0 together with the numbers A042963.
Original entry on oeis.org
1, 3, 7, 39, 103, 615, 1639, 9831, 26215, 157287, 419431, 2516583, 6710887, 40265319, 107374183, 644245095, 1717986919, 10307921511, 27487790695, 164926744167, 439804651111, 2638827906663, 7036874417767, 42221246506599
Offset: 1
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113876
a(n) = a(n-1) + 2^(k(n)), where k(n) is the n-th term of the sequence formed by k(1)=0 together with the numbers A042964.
Original entry on oeis.org
1, 5, 13, 77, 205, 1229, 3277, 19661, 52429, 314573, 838861, 5033165, 13421773, 80530637, 214748365, 1288490189, 3435973837, 20615843021, 54975581389, 329853488333, 879609302221, 5277655813325, 14073748835533, 84442493013197, 225179981368525, 1351079888211149
Offset: 1
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113914
(1,2,3) Jasinski-like positive power sequence.
Original entry on oeis.org
1, 5, 13, 29, 61, 131, 271, 569, 1381, 2789, 5581, 11171, 22369, 44741, 89491, 185543, 373273, 766229, 1532701, 3065411, 6130849, 12261701, 24700549, 49401101, 98802211, 202387391, 409557751, 819116231, 1638232471, 3276464969
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 3^1 = 5.
a(3) = 2*5 + 3^1 = 13.
a(4) = 2*13 + 3^1 = 29.
a(5) = 2*29 + 3^1 = 61.
a(6) = 2*61 + 3^2 = 271.
a(7) = 2*271 + 3^2 = 569.
a(32) = 2*6553461379 + 3^49 = 239299329230630636512841. Here 49 is a record value for the exponent.
A113927
a(1)=1, and recursively a(n+1) is the smallest prime p of the form p = 2*a(n) + 5^k for some k>0.
Original entry on oeis.org
1, 7, 19, 43, 211, 547, 4219, 8443, 17011, 34147, 71419, 142963, 1220989051, 3662681227, 19080811690579, 38161623381163, 76324467465451, 152648936884027, 305299094471179, 4656613483675581520483
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 5^1 = 7.
a(3) = 2*7 + 5^1 = 19.
a(4) = 2*19 + 5^1 = 43.
a(5) = 2*43 + 5^3 = 211.
a(6) = 2*211 + 5^3 = 547.
a(7) = 2*547 + 5^5 = 4219.
a(13) = 2*142963 + 5^13 = 1220989051.
a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent.
a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.
Original entry on oeis.org
2, 4, 9, 36, 6561, 252252704150178, 1650016588712720468
Offset: 1
a(6)-a(7) using Kim Walisch's primecount, from
Amiram Eldar, Mar 13 2020
Comments