cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A243934 Numbers k such that 6^k + k^6 + 1 is prime.

Original entry on oeis.org

0, 2, 4, 14, 22, 26, 36, 216, 354, 874, 1018, 2798, 6116, 6574, 6922, 8090, 8398, 12866, 20816, 54810
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 15 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], PrimeQ[6^# + #^6 + 1] &]
  • PARI
    is(n)=ispseudoprime(6^n+n^6+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(19) from Vaclav Kotesovec, Jun 16 2014
a(20) from Michael S. Branicky, Oct 12 2024

A216420 Numbers k such that 13^k + k^13 - 1 is prime.

Original entry on oeis.org

1, 5, 85, 155, 383, 6223
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(7) > 2*10^5 if it exists. - Robert Price, Jul 07 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(13^n+n^13-1)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[13^# + #^13 - 1] &]
  • PARI
    is(n)=ispseudoprime(13^n+n^13-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(6) from Robert Price, May 24 2014

A216421 Numbers k such that 13^k + k^13 + 1 is prime.

Original entry on oeis.org

0, 9, 4371, 7985, 14711
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(6) > 10^5. - Robert Price, Feb 23 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[13^# + #^13 + 1] &]
  • PARI
    is(n)=ispseudoprime(13^n+n^13+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(4)-a(5) from Robert Price, Feb 23 2014

A216422 Numbers k such that 19^k + k^19 - 1 is prime.

Original entry on oeis.org

1, 17, 145, 427, 4327, 14195
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(7) > 10^5. - Robert Price, Mar 25 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[19^# + #^19 - 1] &]
  • PARI
    is(n)=ispseudoprime(19^n+n^19-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(6) from Robert Price, Mar 25 2014

A216424 Numbers k such that 4^k + k^4 - 1 is prime.

Original entry on oeis.org

2, 16, 74, 164, 518, 796, 8756, 12598
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(9) > 10^5. - Robert Price, Feb 04 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(4^n+n^4-1)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[4^# + #^4 - 1] &]
  • PARI
    is(n)=ispseudoprime(4^n+n^4-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(7)-a(8) from Robert Price, Feb 04 2014

A216425 Numbers k such that 6^k + k^6 - 1 is prime.

Original entry on oeis.org

12, 24, 72, 13404, 179964
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(6) > 2*10^5. - Robert Price, Apr 14 2014
a(1)-a(5) are multiples of 12. - Robert Price, Apr 14 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(6^n+n^6-1)];
    
  • Mathematica
    Select[Range[0, 10000], PrimeQ[6^# + #^6 - 1] &]
  • PARI
    is(n)=ispseudoprime(6^n+n^6-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(4)-a(5) from Robert Price, Apr 14 2014

A216591 Numbers k such that 8^k + k^8 - 1 is prime.

Original entry on oeis.org

10, 38, 428, 824, 3902, 4712, 5596, 29572
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2012

Keywords

Comments

a(9) > 10^5. Robert Price, Feb 25 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 4000],PrimeQ[8^# + #^8 - 1] &]
  • PARI
    is(n)=ispseudoprime(8^n+n^8-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(6)-a(8) from Robert Price, Feb 25 2014

A216618 Numbers k such that 10^k + k^10 + 1 is prime.

Original entry on oeis.org

0, 726, 1974, 3336
Offset: 1

Views

Author

Vincenzo Librandi, Sep 11 2012

Keywords

Comments

a(5) > 10^5. - Robert Price, Oct 06 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[10^# + #^10 + 1] &]
  • PARI
    is(n)=ispseudoprime(10^n+n^10+1) \\ Charles R Greathouse IV, Jun 13 2017

A216619 Numbers k such that 10^k + k^10 - 1 is prime.

Original entry on oeis.org

2, 8, 1592, 2380
Offset: 1

Views

Author

Vincenzo Librandi, Sep 11 2012

Keywords

Comments

Next term > 10^4.
a(5) > 10^5. - Robert Price, Oct 08 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[10^# + #^10 - 1] &]
  • PARI
    is(n)=ispseudoprime(10^n+n^10-1) \\ Charles R Greathouse IV, Jun 13 2017

A216592 Numbers m such that 8^m + m^8 + 1 is prime.

Original entry on oeis.org

0, 108, 27018
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2012

Keywords

Comments

Next term > 2*10^4.
a(4) > 10^5. - Robert Price, Oct 08 2015

Examples

			8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
		

Crossrefs

Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13).
Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19).
Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5).
Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5).

Programs

  • Mathematica
    Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
  • PARI
    is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(3) from Robert Price, Oct 08 2015
Previous Showing 11-20 of 20 results.