A243934
Numbers k such that 6^k + k^6 + 1 is prime.
Original entry on oeis.org
0, 2, 4, 14, 22, 26, 36, 216, 354, 874, 1018, 2798, 6116, 6574, 6922, 8090, 8398, 12866, 20816, 54810
Offset: 1
-
Select[Range[0, 1000], PrimeQ[6^# + #^6 + 1] &]
-
is(n)=ispseudoprime(6^n+n^6+1) \\ Charles R Greathouse IV, Jun 13 2017
A216420
Numbers k such that 13^k + k^13 - 1 is prime.
Original entry on oeis.org
1, 5, 85, 155, 383, 6223
Offset: 1
-
[n: n in [0..1000] | IsPrime(13^n+n^13-1)];
-
Select[Range[0, 5000], PrimeQ[13^# + #^13 - 1] &]
-
is(n)=ispseudoprime(13^n+n^13-1) \\ Charles R Greathouse IV, Jun 13 2017
A216421
Numbers k such that 13^k + k^13 + 1 is prime.
Original entry on oeis.org
0, 9, 4371, 7985, 14711
Offset: 1
-
Select[Range[0, 5000], PrimeQ[13^# + #^13 + 1] &]
-
is(n)=ispseudoprime(13^n+n^13+1) \\ Charles R Greathouse IV, Jun 13 2017
A216422
Numbers k such that 19^k + k^19 - 1 is prime.
Original entry on oeis.org
1, 17, 145, 427, 4327, 14195
Offset: 1
-
Select[Range[0, 5000], PrimeQ[19^# + #^19 - 1] &]
-
is(n)=ispseudoprime(19^n+n^19-1) \\ Charles R Greathouse IV, Jun 13 2017
A216424
Numbers k such that 4^k + k^4 - 1 is prime.
Original entry on oeis.org
2, 16, 74, 164, 518, 796, 8756, 12598
Offset: 1
-
[n: n in [0..800] | IsPrime(4^n+n^4-1)];
-
Select[Range[0, 5000], PrimeQ[4^# + #^4 - 1] &]
-
is(n)=ispseudoprime(4^n+n^4-1) \\ Charles R Greathouse IV, Jun 13 2017
A216425
Numbers k such that 6^k + k^6 - 1 is prime.
Original entry on oeis.org
12, 24, 72, 13404, 179964
Offset: 1
-
[n: n in [0..1000] | IsPrime(6^n+n^6-1)];
-
Select[Range[0, 10000], PrimeQ[6^# + #^6 - 1] &]
-
is(n)=ispseudoprime(6^n+n^6-1) \\ Charles R Greathouse IV, Jun 13 2017
A216591
Numbers k such that 8^k + k^8 - 1 is prime.
Original entry on oeis.org
10, 38, 428, 824, 3902, 4712, 5596, 29572
Offset: 1
-
Select[Range[0, 4000],PrimeQ[8^# + #^8 - 1] &]
-
is(n)=ispseudoprime(8^n+n^8-1) \\ Charles R Greathouse IV, Jun 13 2017
A216618
Numbers k such that 10^k + k^10 + 1 is prime.
Original entry on oeis.org
0, 726, 1974, 3336
Offset: 1
-
Select[Range[0, 5000], PrimeQ[10^# + #^10 + 1] &]
-
is(n)=ispseudoprime(10^n+n^10+1) \\ Charles R Greathouse IV, Jun 13 2017
A216619
Numbers k such that 10^k + k^10 - 1 is prime.
Original entry on oeis.org
2, 8, 1592, 2380
Offset: 1
-
Select[Range[0, 5000], PrimeQ[10^# + #^10 - 1] &]
-
is(n)=ispseudoprime(10^n+n^10-1) \\ Charles R Greathouse IV, Jun 13 2017
A216592
Numbers m such that 8^m + m^8 + 1 is prime.
Original entry on oeis.org
8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
Cf. Numbers m such that k^m + m^k - 1 is prime:
A215439 (k=2),
A215440 (k=3),
A216424 (k=4),
A215443 (k=5),
A216425 (k=6),
A215445 (k=7),
A216591 (k=8),
A216619 (k=10),
A215446 (k=11),
A216420 (k=13),
A216422 (k=19).
-
Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
-
is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017
Comments