cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A101361 a(1) = a(2) = 1; for n > 2, a(n) = Knuth's Fibonacci (or circle) product "a(n-1) o a(n-2)".

Original entry on oeis.org

1, 1, 3, 8, 55, 987, 121393, 267914296, 72723460248141, 43566776258854844738105, 7084593923980518516849609894969925639, 690168906931029935139391829792095612517948949963798093315456
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2005

Keywords

Examples

			1o1 = 3, 1o3 = 8, 3o8 = 55, ...
		

Crossrefs

Programs

  • Maple
    with(combinat); f:=n->fibonacci(2*fibonacci(n));
    # second Maple program:
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> F(2*F(n)):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jan 20 2017
  • Mathematica
    Table[ Fibonacci[2Fibonacci[n]], {n, 12}] (* Robert G. Wilson v, Feb 12 2005 *)
  • PARI
    a(n)=if(n<1,0,fibonacci(2*fibonacci(n)))

Formula

a(n) = Fibonacci(2*Fibonacci(n)).
Third-order nonlinear recursion: a(0)=1, a(1)=1, a(2)=3, a(n)=(a(n-1)^2 - a(n-2)^2)/a(n-3). - T. D. Noe, Mar 17 2009

Extensions

Formula and more terms from Michael Somos, Feb 03 2005

A356592 Array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = Sum_{i, j >= 3} t_i * u_j * T(i+j) where Sum_{i >= 3} t_i * T(i) and Sum_{j >= 3} u_j * T(j) are the greedy tribonacci representations of n and k, respectively, and T = A000073.

Original entry on oeis.org

0, 0, 0, 0, 7, 0, 0, 13, 13, 0, 0, 20, 24, 20, 0, 0, 24, 37, 37, 24, 0, 0, 31, 44, 57, 44, 31, 0, 0, 37, 57, 68, 68, 57, 37, 0, 0, 44, 68, 88, 81, 88, 68, 44, 0, 0, 51, 81, 105, 105, 105, 105, 81, 51, 0, 0, 57, 94, 125, 125, 136, 125, 125, 94, 57, 0
Offset: 0

Views

Author

Rémy Sigrist, Sep 11 2022

Keywords

Comments

This sequence is to tribonacci numbers (A000073) what A135090 is to Fibonacci numbers (A000045).

Examples

			Array A(n, k) begins:
  n\k | 0   1    2    3    4    5    6    7    8    9   10
  ----+---------------------------------------------------
    0 | 0   0    0    0    0    0    0    0    0    0    0
    1 | 0   7   13   20   24   31   37   44   51   57   64
    2 | 0  13   24   37   44   57   68   81   94  105  118
    3 | 0  20   37   57   68   88  105  125  145  162  182
    4 | 0  24   44   68   81  105  125  149  173  193  217
    5 | 0  31   57   88  105  136  162  193  224  250  281
    6 | 0  37   68  105  125  162  193  230  267  298  335
    7 | 0  44   81  125  149  193  230  274  318  355  399
    8 | 0  51   94  145  173  224  267  318  369  412  463
    9 | 0  57  105  162  193  250  298  355  412  460  517
   10 | 0  64  118  182  217  281  335  399  463  517  581
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, 0) = A(0, k) = 0.
A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k) for m, n, k >= 5.
Previous Showing 11-12 of 12 results.