cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A102117 Iccanobirt numbers (7 of 15): a(n) = R(a(n-1)) + R(a(n-2)) + R(a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 42, 62, 81, 68, 130, 135, 648, 1408, 9418, 17036, 79261, 87517, 150946, 736926, 1350266, 7899219, 16380155, 70858879, 162124155, 704415429, 1573821475, 7217219419, 15814925285, 73143352729, 160127403115
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    rev:= proc(n) local i, L;
    L:= convert(n,base, 10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    A[0]:= 0: A[1]:= 0: A[2]:= 1:
    RA[0]:=0: RA[1]:= 0: RA[2]:= 1:
    for n from 3 to 100 do
      A[n]:= RA[n-1]+RA[n-2]+RA[n-3];
      RA[n]:= rev(A[n]);
    od:
    seq(A[n],n=0..100); # Robert Israel, Aug 04 2016
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]]+R[a[n-2]]+R[a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,Total[IntegerReverse/@{a,b,c}]}; Transpose[ NestList[ nxt,{0,0,1},40]][[1]] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Nov 28 2015 *)

Formula

A004086(a(n)) = A102125(n).

A102114 Iccanobirt numbers (4 of 15): a(n) = R(a(n-1)) + a(n-2) + a(n-3), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 42, 44, 99, 185, 724, 711, 1026, 7636, 8104, 12680, 24361, 37126, 99214, 102786, 823541, 347328, 1750070, 1871440, 2539179, 13340862, 31214950, 21821254, 89768624, 95723002, 131622637, 921717757, 985062768
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]]+a[n-2]+a[n-3];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,FromDigits[Reverse[IntegerDigits[c]]]+b+a}; Transpose[NestList[nxt,{0,0,1},40]][[1]]  (* Harvey P. Dale, May 30 2012 *)

Formula

A004086(a(n)) = A102122(n).

A102119 Iccanobirt numbers (9 of 15): a(n) = R(a(n-1) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 36, 401, 994, 8541, 9369, 90481, 803101, 122309, 918349, 6691411, 1892158, 8837259, 38317811, 15086655, 45813926, 46917727, 407993841, 224348715, 25411507, 629951893, 2286023711, 6507846892, 9250302919
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+R[a[n-3]]];Table[a[n], {n, 0, 40}]

Formula

a(n) = A004086(A102111(n)).

A102120 Iccanobirt numbers (10 of 15): a(n) = R(a(n-1) + R(a(n-2)) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 44, 711, 977, 8311, 1089, 4023, 53122, 51475, 33677, 412441, 945145, 6303211, 1027527, 8075903, 51363612, 74868455, 376085401, 68539284, 214889742, 927862936, 2360934421, 2982905123, 1968515515, 8282454457
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+R[a[n-2]]+a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_, b_, c_}] := {b, c, IntegerReverse[c + IntegerReverse[b] + a]}; NestList[nxt,{0,0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 30 2017 *)

Formula

a(n) = A004086(A102112(n)).

A102121 Iccanobirt numbers (11 of 15): a(n) = R(a(n-1) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 44, 99, 581, 427, 117, 6201, 6367, 4018, 8621, 16342, 41752, 18376, 15486, 185801, 336123, 551315, 925189, 7799571, 5524929, 5346628, 6800461, 15116342, 36822052, 98232826, 48616741, 398264631, 406948574
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,IntegerReverse[c+IntegerReverse[b]+IntegerReverse[a]]}; NestList[ nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Mar 23 2023 *)

Formula

a(n) = A004086(A102113(n)).

A102122 Iccanobirt numbers (12 of 15): a(n) = R(R(a(n-1)) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 26, 531, 302, 67, 909, 8721, 4522, 48811, 72152, 6487, 908821, 844702, 6572211, 9726782, 29139201, 58129562, 86185456, 139627251, 949140792, 656458225, 9962261161, 6171227123, 20114953831, 68392496992
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,IntegerReverse[IntegerReverse[c]+b+a]}; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Sep 10 2024 *)

Formula

a(n) = A004086(A102114(n)).

A102123 Iccanobirt numbers (13 of 15): a(n) = R(R(a(n-1)) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 26, 711, 761, 49, 279, 8811, 1651, 44311, 38141, 55006, 45901, 34108, 990681, 161132, 5891031, 6129461, 8041777, 45820251, 74839842, 60558487, 202825861, 635089352, 309192535, 7549098331, 8252802091
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+a[n-2]+R[a[n-3]]];Table[a[n], {n, 0, 40}]

Formula

a(n) = A004086(A102115(n)).

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020
Previous Showing 11-18 of 18 results.