cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A102616 Nonprime numbers of order 3.

Original entry on oeis.org

1, 14, 16, 22, 24, 25, 30, 33, 35, 36, 39, 44, 46, 48, 50, 51, 54, 55, 56, 62, 64, 66, 68, 69, 70, 75, 76, 77, 80, 85, 86, 87, 90, 92, 93, 94, 96, 100, 102, 104, 105, 108, 111, 115, 116, 117, 118, 120, 122, 123, 124, 126, 130, 132, 134, 136, 138, 142, 144, 145, 148, 150
Offset: 1

Views

Author

Cino Hilliard, Jan 31 2005

Keywords

Comments

nps(n,1) -> list nonprime(n) or the sequence of nonprime numbers. nps(n,2) -> list nonprime(nonprime(n)) or nps of order 2. nps(n,3) -> list nonprime(nonprime(nonprime(n))) or npcs of order 3 ..... The order is the number of nestings - 1.

Examples

			Nonprime(2) = 4.
Nonprime(4) = 8.
Nonprime(8) = 14, the 2nd entry.
		

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
  • Mathematica
    nonPrime[n_] := FixedPoint[n + PrimePi[ # ] &, n]; Nest[ nonPrime, Range[62], 3] (* Robert G. Wilson v, Feb 04 2005 *)
  • PARI
    \\ We perform nesting(s) with a loop.
    cics(n,m) = { local(x,y,z); for(x=1,n, z=x; for(y=1,m+1, z=nonprime(z); ); print1(z",") ) }
    nonprime(n) = { local(c,x); c=1; x=0; while(c <= n, x++; if(!isprime(x),c++); ); return(x) }

Extensions

Edited by Robert G. Wilson v, Feb 04 2005

A270795 The prime/nonprime compound sequence BAB.

Original entry on oeis.org

4, 12, 21, 28, 34, 42, 52, 60, 65, 74, 84, 95, 98, 106, 119, 128, 133, 135, 141, 147, 170, 177, 180, 192, 195, 209, 214, 220, 231, 246, 250, 253, 284, 288, 290, 295, 301, 316, 323, 329, 336, 339, 351, 365, 382, 387, 390, 394, 417, 429, 432, 445, 462, 470, 474, 481, 490, 505, 516, 518, 532, 538, 543, 550, 559, 566
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A232637 Odious numbers of order 2: a(n) = A000069(A000069(n)).

Original entry on oeis.org

1, 2, 7, 13, 14, 21, 25, 26, 31, 37, 41, 42, 49, 50, 55, 61, 62, 69, 73, 74, 81, 82, 87, 93, 97, 98, 103, 109, 110, 117, 121, 122, 127, 133, 137, 138, 145, 146, 151, 157, 161, 162, 167, 173, 174, 181, 185, 186, 193, 194, 199, 205, 206, 213, 217, 218, 223, 229, 233, 234, 241, 242, 247, 253
Offset: 1

Views

Author

Gerasimov Sergey, Nov 27 2013

Keywords

Comments

Odious numbers with odious subscripts.
From Antti Karttunen, Nov 29 2013: (Start)
Starting from 4 and iterating A000069(4), A000069(A000069(4)), A000069(A000069(A000069(4))), etc. gives A004119 from its second term onward: 4, 7, 13, 25, 49, 97, 193, ..., which is thus a subsequence of this sequence from the term 7 onward.
Proof: All of the terms A004119(n) are odious although A004119(n)-1 is evil, and the formula for A000069(n) reduces to a(n) = 2n - 1 when n-1 is evil, and iterating that formula starting from 4 gives A004119 from 7 onward (cf. Philippe Deléham's formula there dated Feb 20 2004).
(End)
These numbers are never multiples of 4. Probably there are infinitely many multiples of m in this sequence for any m not divisible by 4. Equivalently, A233419(n) > 0 for all n. - Charles R Greathouse IV, Dec 05 2013

Examples

			The first odious number, A000069(1) = 1, and A000069(1) = 1, so a(1) = 1.
The second odious number, A000069(2) = 2, and A000069(2) = 2, so a(2) = 2.
Those were the only fixed points of A000069, and after that, we have:
The third odious number, A000069(3) = 4, and A000069(4) = 7, thus a(3) = 7.
The fourth odious number, A000069(4) = 7, and A000069(7) = 13, thus a(4) = 13.
		

Crossrefs

A004119 from term 7 onward is a subsequence.
Subsequence of A042968.

Programs

Formula

a(n) = A000069(A000069(n)).
4n-6 <= a(n) <= 4n-3, see PARI script. - Charles R Greathouse IV, Dec 05 2013

A175250 Nonprimes (A018252) with noncomposite (A008578) subscripts.

Original entry on oeis.org

1, 4, 6, 9, 12, 18, 21, 26, 28, 34, 42, 45, 52, 57, 60, 65, 74, 81, 84, 91, 95, 98, 106, 112, 119, 128, 133, 135, 141, 143
Offset: 1

Views

Author

Jaroslav Krizek, Mar 13 2010

Keywords

Comments

a(n) = nonprime(noncomposite(n)) = A018252(A008578(n)). a(n) U A102615(n+1) = A018252(n) for n >= 1. a(1) = 1, a(n) = A078782(n-1) = nonprimes (A008578) with prime (A000040) subscripts for n >=2.

Examples

			a(5) = 12 because a(5) = b(q(5)) = b(7) = 12, q = noncomposite, b = nonprime.
		

A161186 In the sequence of nonprime numbers, an element k's position is either prime or nonprime. If k's position is prime, f(k)= the k-th nonprime-positioned element, else f(k) is the k-th prime-positioned element. Iterated application of x-> f(x) gives disjoint sequences generated by the first elements, which form the current sequence.

Original entry on oeis.org

1, 6, 8, 9, 10, 12, 15, 18, 20, 21, 22, 25, 26, 27, 32, 33, 34, 35, 36, 38, 40, 44, 45, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 64, 66, 69, 70, 72, 75, 76, 77, 78, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 98, 99, 100, 102, 104, 108, 110, 112, 114, 115, 116, 117, 120
Offset: 1

Views

Author

Daniel Tisdale, Jun 05 2009, Jun 10 2009

Keywords

Examples

			The nonprime numbers are: [1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20].
Those with prime positions are: [4, 6, 9, 12, 18].
Those with nonprime positions are: [1, 8, 10, 14, 15, 16, 20].
So we have {f(1)} = {1,4,14,60,...}, {f(6)} = {6,16,74,...}, {f(8)} ={8,28,56,...}; so the current sequence are the first elements, {1,6,8,...etc}.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(va = select(x->(! isprime(x)), [1..nn])); my(vap = vector(primepi(#va), k, va[prime(k)])); my(vanp = Vec(setminus(va, vap))); my(vused = vector(#va), ok=1, last=0, list=List(), new, ok2); while(ok, last++; while ((last <= #vused) && vused[last], last++); if (last > #vused, break); new = va[last]; listput(list, new); ok2 = 1; my(list1 = List()); listput(list1, new); while(ok2, pos = setsearch(va, new); if (!pos, ok2=0, vused[pos] = 1; if (isprime(pos), if (new <= #vanp, new = vanp[new], ok2=0), if (new <= #vap, new = vap[new], ok2=0);); listput(list1, new);););); Vec(list);} \\ Michel Marcus, Aug 18 2022

Extensions

More terms from Michel Marcus, Aug 18 2022

A175248 Noncomposites (A008578) with noncomposite (A008578) subscripts.

Original entry on oeis.org

1, 2, 3, 7, 13, 29, 37, 53, 61, 79, 107, 113, 151, 173, 181, 199, 239, 271, 281, 317, 349, 359, 397, 421, 457, 503, 541, 557, 577, 593, 613, 701, 733, 769, 787, 857, 863, 911, 953, 983, 1021, 1061, 1069, 1151, 1163, 1193, 1213, 1291, 1399, 1429, 1439, 1459
Offset: 1

Views

Author

Jaroslav Krizek, Mar 13 2010

Keywords

Comments

Noncomposite numbers of order 2.
a(n) = noncomposite(noncomposite(n)) = A008578(A008578(n)). a(1) = 1, a(n) = A055003(n) for n >=2. a(n) U A175249(n+1) = A008578 for n >= 1.

Examples

			a(5) = 13 because a(5) = q(q(5)) = q(7) = 13, q = noncomposite.
		

Crossrefs

Formula

a(n)=A008578(A008578(n)).

Extensions

More terms from Juri-Stepan Gerasimov, Apr 15 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
Previous Showing 11-16 of 16 results.