cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A348589 a(n) = (10^n+2)^2 / 6.

Original entry on oeis.org

24, 1734, 167334, 16673334, 1666733334, 166667333334, 16666673333334, 1666666733333334, 166666667333333334, 16666666673333333334, 1666666666733333333334, 166666666667333333333334, 16666666666673333333333334, 1666666666666733333333333334
Offset: 1

Views

Author

Bernard Schott, Oct 24 2021

Keywords

Comments

Numbers q.r such that q.r = 3*q*r, when q and r have the same number of digits, "." means concatenation, r = 2q and r may not begin with 0.
We must solve the Diophantine equation q.r = q*10^m+r = 3 * q*r where m = length(q) = length(r).
The number of solutions is infinite with (r, q) = ((10^n+2)/3, (10^n+2)/6) and n >= 1.
Note that 15 satisfies also q.r = 3*q*r, 15 = 3*1*5 with here r = 5*q.
For further information about the general equation q.r = k * q*r, see A347541.
Problem proposed on the French website Diophante (see link).

Examples

			a(1) = 12^2 / 6 = 24 and 2.4 = 3 * 2*4.
a(2) = 102^2 / 6 = 1734 and 17.34 = 3 * 17*34.
		

Crossrefs

Subsequence of A347541.

Programs

  • Maple
    seq((10^n+2)^2 / 6, n=1..14);
  • Mathematica
    Table[(10^n + 2)^2/6, {n, 1, 14}] (* Amiram Eldar, Oct 24 2021 *)
    LinearRecurrence[{111,-1110,1000},{24,1734,167334},20] (* Harvey P. Dale, Sep 05 2025 *)
  • Python
    def a(n): return (10**n+2)**2//6
    print([a(n) for n in range(1, 15)]) # Michael S. Branicky, Oct 24 2021

Formula

a(n) = (10^n+2)^2 / 6.
a(n) = A133384(n-1)^2/6.
G.f.: 6*x*(4-155*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)). - Stefano Spezia, Oct 25 2021
a(n) = 3*A102807(n)/2. - Hugo Pfoertner, Oct 30 2021

A102832 Number of n-digit squares which contain the string "666" but not "6666".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 21, 78, 302, 1139, 4156, 14791, 52529, 183565, 635691, 2183533, 7314869, 25303217
Offset: 1

Views

Author

James R. Buddenhagen, Feb 27 2005

Keywords

Crossrefs

Programs

Extensions

a(13)-a(19) from Robert G. Wilson v, Mar 03 2005
Previous Showing 11-12 of 12 results.