A161091 Number of partitions of n into squares where every part appears at least 3 times.
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 6, 6, 5, 6, 7, 8, 7, 7, 8, 10, 8, 8, 11, 11, 10, 11, 13, 13, 13, 13, 15, 18, 15, 16, 20, 21, 19, 21, 23, 24, 24, 24, 27, 30, 28, 28, 33, 36, 33, 35, 39, 42, 41, 42, 45, 49, 47, 48, 55, 56, 54, 58, 63, 67, 65, 66, 72, 78
Offset: 1
Keywords
Examples
a(23)=4 because we have (4^5)(1^3), (4^4)(1^7), (4^3)(1^11), and (1^23). - _Emeric Deutsch_, Jun 24 2009
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1000
Programs
-
Maple
g := product(1+x^(3*j^2)/(1-x^(j^2)), j = 1 .. 20): gser := series(g, x = 0, 90): seq(coeff(gser, x, n), n = 2 .. 84); # Emeric Deutsch, Jun 24 2009
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Product[(1 + x^(3*k^2)/(1-x^(k^2))), {k, 1, Sqrt[nmax]+1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)
Formula
G.f.: Product_{j>=1} (1 + x^(3j^2)/(1-x^(j^2))). - Emeric Deutsch, Jun 24 2009
Comments