cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A161091 Number of partitions of n into squares where every part appears at least 3 times.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 6, 6, 5, 6, 7, 8, 7, 7, 8, 10, 8, 8, 11, 11, 10, 11, 13, 13, 13, 13, 15, 18, 15, 16, 20, 21, 19, 21, 23, 24, 24, 24, 27, 30, 28, 28, 33, 36, 33, 35, 39, 42, 41, 42, 45, 49, 47, 48, 55, 56, 54, 58, 63, 67, 65, 66, 72, 78
Offset: 1

Views

Author

R. H. Hardin, Jun 02 2009

Keywords

Examples

			a(23)=4 because we have (4^5)(1^3), (4^4)(1^7), (4^3)(1^11), and (1^23). - _Emeric Deutsch_, Jun 24 2009
		

Crossrefs

Programs

  • Maple
    g := product(1+x^(3*j^2)/(1-x^(j^2)), j = 1 .. 20): gser := series(g, x = 0, 90): seq(coeff(gser, x, n), n = 2 .. 84); # Emeric Deutsch, Jun 24 2009
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Product[(1 + x^(3*k^2)/(1-x^(k^2))), {k, 1, Sqrt[nmax]+1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)

Formula

G.f.: Product_{j>=1} (1 + x^(3j^2)/(1-x^(j^2))). - Emeric Deutsch, Jun 24 2009

A300414 Expansion of Product_{k>=2} (1 + x^Fibonacci(k))/(1 - x^Fibonacci(k)).

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 30, 42, 62, 84, 114, 154, 198, 260, 332, 418, 530, 654, 810, 994, 1202, 1462, 1752, 2094, 2500, 2948, 3486, 4092, 4776, 5582, 6468, 7490, 8650, 9928, 11406, 13036, 14862, 16934, 19196, 21758, 24592, 27706, 31216, 35038, 39284, 43990, 49100, 54798, 61008, 67798
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A000119 and A003107.

Crossrefs

Programs

  • Mathematica
    nmax = 49; CoefficientList[Series[Product[(1 + x^Fibonacci[k])/(1 - x^Fibonacci[k]), {k, 2, 20}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^A000045(k))/(1 - x^A000045(k)).

A319243 Expansion of Product_{k>0} (1 - x^(k^2))/(1 + x^(k^2)).

Original entry on oeis.org

1, -2, 2, -2, 0, 2, -2, 2, 0, -4, 6, -6, 4, 2, -6, 6, -6, 2, 4, -6, 8, -6, -2, 6, -8, 8, -2, -4, 8, -10, 6, 2, -6, 6, -2, -6, 8, -6, 2, 6, -8, 6, -2, -6, 8, -4, -2, 10, -14, 8, 0, -6, 16, -14, 4, 2, -16, 18, -2, -10, 24, -30, 14, 4, -20, 34, -26, 2, 16, -30, 26, 2, -20
Offset: 0

Views

Author

Seiichi Manyama, Sep 15 2018

Keywords

Crossrefs

Product_{k>0} (1 - x^(k^m))/(1 + x^(k^m)): A002448 (m=1), this sequence (m=2), A319244 (m=3).
Cf. A103265.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, sqrtint(N), (1-x^(k^2))/(1+x^(k^2))))

Formula

Convolution inverse of A103265.

A361805 Expansion of Product_{j=1..n, k=1..n} (1 + x^(k^j)) / (1 - x^(k^j)).

Original entry on oeis.org

1, 2, 10, 52, 278, 1508, 8262, 45604, 253186, 1412196, 7906866, 44411420, 250124308, 1411963200, 7986664250, 45255888828, 256840959728, 1459686175768, 8306130772008, 47318321533008, 269839722667800, 1540242835509060, 8799238591245006, 50308756959106988
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[Product[(1+x^(k^j))/(1-x^(k^j)), {k, 1, n^(1/j)}], {j, 1, n}], {x, 0, n}], {n, 0, 40}]

Formula

a(n) ~ c * (1 + sqrt(2))^(2*n) / sqrt(n), where c = 0.6431307610999754935775134585988078560575016233514072350040712130921818...
Previous Showing 11-14 of 14 results.